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A B S T R A C T  

It is shown that the limit # of a commutative infinitesimal triangular sys- 
tem A on a totally disconnected locally compact group G is embeddable 
in a continuous one-parameter convolution semigroup if either (1)G is a 
compact extension of a closed solvable normal subgroup or (2)G is dis- 
crete and A is normal or (3)G is a discrete linear group over a field of 
characteristic zero. For a special triangular system of convolution pow- 
ers (#~" -~ tt, ttn -+ ~3), the above is shown to hold without any of the 
conditions (1)-(3). For a general locally compact group G necessary con- 
ditions are obtained for the embeddability of a shift of limit tt of A; in 
particular, the conditions are trivially satisfied when G is abelian. Also, 
the embedding of a limit of a symmetric system on G is shown to hold 
under condition (1) as above. 

1. I n t r o d u c t i o n  

T h e  cen t r a l  l imi t  p r o b l e m  for g r o u p - v a l u e d  i n d e p e n d e n t  r a n d o m  var iab les  (Xj)  

conce rns  t h e  l i m i t i n g  b e h a v i o u r  of  t h e  c o r r e s p o n d i n g  sequence  of  p a r t i a l  s u m s  

Sn = Ej~=IXj .  In  t h e  c lass ical  case  of  real  va lued  r a n d o m  var iab les  t h e  p r o b l e m  

was  so lved  by P. Levy,  w h o  found  all  poss ib le  l imi t s  of  t h e  s equence  of  n o r m e d  

s u m s  {T,~ = (1/b~)Sn - an} (where  b,~ e R~_, and  an E •) u n d e r  t h e  a d d i t i o n a l  
n i  h y p o t h e s i s  t h a t  Xj ' s  are  iden t i ca l ly  d i s t r i bu t ed .  Subsequen t ly ,  Sn = Ej=IXi  j 

n l  
was  cons ide red ,  w h e r e  (Xij)ieN,j=l (ni ~ 0o) is a t r i a n g u l a r  s y s t e m  of  r a n d o m  

va r i ab le s  w h i c h  is in f in i t e s ima l  in t h e  sense  t h a t  (Xij)  converges  to  zero  as i --~ c~, 

u n i f o r m l y  in j .  

B y  t h e  c lass ica l  K h i n t c h i n e - L e v y  t h e o r y  eve ry  l imi t  of  an  in f in i t e s ima l  t r i a n g u -  

la r  s y s t e m  on  R is in f in i te ly  d iv i s ib le  and  hence  it  is e m b e d d a b l e  in a c o n t i n u o u s  
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one-parameter convolution semigroup. The same was considered on more gen- 

eral abelian groups, i.e. on divisible locally compact second countable groups 

by Parthasarathy et al. (cf. [PRV]) and the infinite divisibility of the limit was 

shown. Ruzsa eliminated the second countability condition and also generalised 

the above for all Banach spaces (cf. JR2]). A similar theorem was also proved 

by Gangolli for certain symmetric spaces (cf. [G]). A result of Carnal shows 

that  infinite divisibility of limits holds for commutative infinitesimal triangular 

systems on compact groups (cf. [C]). An analogous result by Neuenschwander 

shows that  the limit of such a system on a simply connected step-2 nilpotent 

group is embeddable in a continuous one-parameter semigroup if each Xij is 

symmetric (cf. [N1]). The present author generalised the above to all connected 

nilpotent Lie (algebraic) groups provided each Xij is symmetric or the measure 

corresponding to the limit has 'full' (algebraic) support (cf. [$3]). A recent result 

of Neuenschwander also shows the embeddability of the limit of such a system 

on any discrete subgroups of simply connected nilpotent groups (cf. [N2]). We 

refer the reader to [He2] for an exposition of the techniques and results on the 

problem for various classes of groups like abelian groups, compact groups and 

maximally aperiodic groups; see also [HI for the study on totally disconnected 

compact groups and some examples. We also refer the reader to JR1, R2, RS] for 

techniques based on the theory of Hungarian semigroups of probability measures 

on abelian groups and [$3] for generalisations to nonabelian groups, which will 

be used extensively here. 

Here we study (in the measure-theoretic set-up) infinitesimal divisibility and 

embeddability of the limits of commutative infinitesimal triangular systems on 

more general locally compact groups G under certain conditions, such as when 

the system is symmetric or when G is totally disconnected. 

Let S be a Hausdorff semigroup with identity e. A triangular system A ---- 

{aij E S I i E N, 1 _< j _< ni, ni ~ c~} is said to be c o m m u t a t i v e  if for all 

i E N, aijaik - - - -  aikaij for all 1 _< j, k < ni, in f in i tes imal  in S if for every 

neighbourhood U of e in S, there exists an i0 E N such that aij E U for all 

i > i0 and 1 ~ j < ni (that is, aij converges to e as i --+ cx~, uniformly in j )  and 

c o n v e r g e n t  if the sequence of row-wise product {a~ = IIj=lai ~ } converges in S; 

if # is its limit then we say that A converges  to #. For a subset A of S and s E S 

a decomposition as s = s l . . . s n ,  for some n E N, where si E A and s~sj = sjsi  

for all i , j ,  is called an A - d e c o m p o s i t i o n  o f  s. An element s E S is said to be 

in f in i t e s ima l ly  d iv is ib le  if s has a U-decomposition for every neighbourhood 

U of e in S. For any s E S, let T, denote the set of all divisors (two sided factors) 
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the invariance group of 

Haar  measure of H and 

subsemigroup of M 1 (G) 

measure of the form Ax 

of A. 

o f s ,  i.e. T s = { t E S ] t r = r t = s f o r s o m e r E S } .  

Let G be a locally compact  group and let M 1 (G) be the topological semigroup 

of all Borel (regular) probability measures with weak topology and the convolu- 

tion operation. For a g E G, let 5g denote the point mass at g and let gA = ~gA 
n l  (also, A9 = A~g) for any A E MI(G) .  A triangular system A = (#ij)ieN,j=l of 

probabili ty measures on G is said to be infinitesimal if for any e > 0 and any 

neighbourhood U of the identity e in G, there exists N E N such that  for all 

i > N,  ttij (U) > 1 - c for all j .  (Note that  this definition is the same as the 

infinitesimality in the semigroup S -- MI(G) defined earlier; it is also equiva- 

lent to the infinitesimality of the corresponding system of random variables). A 

measure # E M 1 (G) is said to be in f in i te ly  d iv i s ib le  (resp. w e a k l y  in f in i t e ly  

d iv is ib le)  if for every n E N, there exists #~ E M 1 (G) such that  #~ = # (resp. 
n #,~xn = # for some xn E G); and it is said to be e m b e d d a b l e  if there exists a 

continuous one-parameter  semigroup {#t}t_>0 in MI(G) such that  #1 = #. Let 

M(G) be the complex Banach algebra of all bounded complex measures on G 

with the usual norm (cf. [He2], pp. 31). For A E M(G), the a d j o i n t  o f  A, 

denoted by ~, is defined as ~(B) = A(B-1),  for all Borel sets B (recall that  

B - 1  = {g-11 g E B}). We call a measure A E M(G) n o r m a l  (resp. s y m m e t -  

r ic)  if/k~ = ~ (resp. ~ = ~). We call a triangular system A ---- (ttij)i~N,j=ln~ in 

M 1 (G) n o r m a l  (resp. s y m m e t r i c )  if Pij is normal (resp. symmetric) for all i 

and j .  Obviously, any symmetric measure (resp. triangular system) is normal. 

Throughout  the paper, G will be a locally compact (Hausdorff) topological 

group and Z will denote its center. Also G O will be the connected component  of 

the identity in G. For a • E M 1 (G), let G(A) denote the smallest closed subgroup 

containing supp A in G and let N(A), Z(A) denote respectively the normaliser and 

the centraliser of G(A) in G. For any A e MI(G) ,  let I~ ---- {x E G I x)~x -1 = ~} 
and I(A) = {x e G I xA -- ~x -- A}. Clearly, I ( s  is compact and it is called 

A. For a compact subgroup H in G, let wg be the 

let M~(G) = wgMl(G)wg. Then M}~(G) is a closed 

with identity wH. For a A E M 1 (G) and any x E G, a 

(resp. x/~) is said to be a r igh t  (resp. left) t r a n s l a t e  

A group G is said to be a l m o s t  p e r i o d i c  if all its finite dimensional irreducible 

unitary representations seperate points in G. 

THEOREM 1.1 : Let G be a first countable locally compact group and let A be a 

commutative infinitesimal triangular system converging to tt. If either 

(a) G is totally disconnected or 
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(b) i f  A is symmetric,  

then # is mfintesimally divisible in M~(G(#)  ) for some compact subgroup H C 

I(it).  Moreover, f iG(it)  C L, where L is a compact extension of a dosed solvable 

normal subgroup or L is an almost periodic group, then # is embeddable. 

A measure it is said to be a P o i s s on  m e a s u r e  if it = exPH 9, where ~ = 

~(~ - WH) for some "7 E ~ and A E M~/(G), for a compact subgroup H of G 

(cf. [HI, 3.2.1). By a result of Martin Lbf any embeddable measure on a discrete 

group is a Poisson measure. 

THEOREM 1.2: Let G be any discrete group and let A and it be as above. 

Suppose that  one of the following holds: 

(1) G(it) is a finite extension of a solvable group; 

(2) G(it) is a linear group over a locally compact field of characteristic zero; 

(3) A is normal. 

Then it is a Poisson measure. 

Theorems 1.1 and 1.2 generalise Theorem 1 of [N1], Theorem 1 of [N2], and 

also Theorem 1.2 of [$3] in the p-adic group case. 

Remark: Theorem 1.1 also holds for Lie projective groups without the condition 

of first countability; this can be seen from the proof, using Proposition A.2 (see 

Appendix). If G is a totally disconnected Lie projective group, then it is a 

projective limit of discrete groups and hence, in the notation as above, when A 

is normal then it is embeddable. 

We also mention here the following corollaries of Theorem 4.2, which is a 

technical result proved in section 4. 

COROLLARY 1.3: Let G be a real almost algebraic group, i.e. a subgroup of 

finite index in an algebraic group. Let A and it be as in Theorem 1.2. Suppose 

that  Z ( i t ) / Z  is compact, where Z(it) is the centraliser of suppit .  Then it is 

embeddable f i g  is connected nilpotent. I f  either (1) G is nilpotent or (2) G is a 

compact extension of a closed solvable normal subgroup and A is normal, then 

there exists an x E G such that xit is embeddable. 

In the above corollary, if the closed subgroup generated by supp # is Zariski 

dense in G then Z(#)  = Z. Corollary 1.3 is a generalisation of Theorem 1.2 in 

[$3]. Since G is almost algebraic, Z / Z  ~ is finite and hence, from the hypothesis, 

Z ( # ) / Z  ~ is compact.  But one knows also that  I~,/Z(#) is compact (cf. [D], 

Corollary 2.5 or [DM], Theorem 3.2). This implies that  I ~  ~ is compact.  The 
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corollary follows from Theorem 4.2 and the remark following it, together with 

this observation. 

The following corollary generalizes a theorem of Par thasarathy et al. (cf. [PRV] 

and also a theorem of Ruzsa (cf. [R2]). 

COROLLARY 1.4: Let G be a locally compact abelian group and let A and # be 

as above. Then # is infinitely divisible and there exists x E G O such that x#  is 

embeddable; if, further, G o is arcwise connected, then # itself is embeddable. 

The Corollary follows from Theorem 4.2 and Remark (1) following it, as any 

abelian group G is Lie projective and G o = Z ~ -- I ~ The corollary can be 

generalised to first countable central groups up to a certain extent, as in this 

case one can get weak infinite divisibility and shift embeddability of #. (A locally 

compact group G is called a c e n t r a l  g r o u p  if it is a compact extension of its 

center.) 

The following result is about special triangular systems, i.e. the sequence of 

convolution powers. For previously known results see [N] or [$1, $2]. 

THEOREM 1.5: Let G be a locally compact group and let {~'i} be a sequence con- 

verging to 5~. Suppose that { ~ }  converges to #, for some unbounded sequence 

{hi). Assume also that I ~  ~ N Z) is compact. Then # is weakly infinitely 

divisible. If  further I ~  ~ is compact, then x# is embeddable for some x E I ~ I~" 

I f  I ~ = Z ~ then ~ is infinitely divisible and it is embeddable i f  Z ~ is arcwise 

connected. 

In the above Theorem, in particular if G is totally disconnected, then for any 

# E MI(G) ,  I ~ -- Z ~ = {e} and hence, for {~i} and # as above, we get that  # is 

embeddable. 

In the literature, the infinitesimality was considered in the neighbourhoods 

of identity perhaps because in the classical case of ] ~  there are no nontrivial 

compact  subgroups. But in the general case of locally compact groups, we can 

consider infinitesimality in any neighborhoods of WK for a compact subgroup K.  

A triangular system A is said to be WK-infini tes imal  if given a neighbourhood 

U of WK there exists N E N, such that  for all i __ N, #ij C U for all j .  Clearly, 

a measure # which is embeddable in {#t}~_>0 is wK-infinitesimal where WK = #0. 

It turns out that  all the results stated above hold if we replace infinitesimality 

by wK-infinitesimality. Moreover, we have the following: 

THEOREM 1.6: Let G be any group and let K be any compact open subgroup 

of G. Let A be any commutative wK-infinitesimal triangular system converging 

to #. Suppose also that one of the following holds: (1) G is a closed subgroup of 
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GL(n,  Qv), (2) A is symmetric or (3) G is totally disconnected and A is normal. 

Then # is embeddable. 

Perhaps a more natural  generalisation of infinitesimality would be K-infinitesi- 

reality for a compact  subgroup K of G defined as follows: a triangular system A 

on G is said to be K - i n f i n i t e s i m a l  if given e > 0, there exists a neighbourhood 

U of K and N E N, such that  for all i 7_ N,  #ij(U) > 1 - e for all j .  All 

the statements from Theorem 1.1 to Theorem 1.5 are valid if we assume that  

A is K-infinitesimal, instead of infinitesimal, with the additional condition that  

K C I (#) .  In particular, we state the following, without a proof. 

THEOREM 1.7: Let G be a locally compact group and {ui} be a sequence such 

that {v~'} converges to # for some unbounded sequence {ki}. I f  either (1) G 

is totally disconnected and vi -~ v such that G(v) is compact or (2) each vi is 

symmetric, then there exists x C G such that x# is embeddable. 

It  may be noted that  the condition that  G(v) is compact is the same as saying 

that  the triangular system of convolution powers {#ij[ #ij = vi, 1 ~_ j ~_ ki} is 

K-infinitesimal where K = G(v). 

In section 2, we construct semigroups S in which the limit # of a given tri- 

angular system A is infinitesimally divisible. In section 3, we construct partial 

homomorphisms on the factor set of # under certain conditions which would en- 

able us to prove the embedding of # or its shift in section 4. We also prove a 

more general result in section 4 (see Theorem 4.2). 

ACKNOWLEDGEMENT: I t  is a pleasure to thank the Hebrew University of 

Jerusalem, in particular, Prof. Shahar Mozes, for hospitality while this work was 

done. I would like to thank Prof. S. G. Dani for discussions and help in proving 

Proposition A.1. I am also grateful to him for his comments on a preliminary 

version of the manucript.  Thanks are also due to the referee whose comments  

lead to improvement of the manuscript. 

2. Infinitesimal divisibility 

Let G be any locally compact group and let A be a commutat ive infinitesimal 

convergent triangular system with limit #. If G is totally disconnected or if A 

is symmetric,  we first construct an abelian semigroup S of MI(G)  such that  the 

limit # belongs to S, # is infinitesimally divisible in S and T~ in S is compact.  We 

also construct such a semigroup under more general condition (see Proposit ion 

2.9). For this, we use a method as in [$3] combined with some new results based 
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on infinitesimality and concentration functions (see Lemma 2.1 and Theorem 

2.4). 

LEMMA 2.1: Let G be any locally compact group and # E M 1 (G). Let F be any 

compact subset of a and let A = {A E Ml(a)l A(F) _> 5} for some fixed 5 > O. 

Let {As}, {us}, {#~} bene t s in  MI (G)  such that {A~} C A and Asvs = #~ ~ #. 

Then {As} is relatively compact. In particular, T ,  n A is compact. Also, T ,  N U 

is compact for small neighbourhoods U of 5e in M t (G). 

Proof: There exists a net {x~} in G such that  {A~x~} is tight (el. [He2], 

Theorem 1.2.21). Tha t  is, given an e > 0, there exists a compact set K such 

that  A~x~(G \ K)  <_ e for all a.  Let e < 5. Then A~(Kx~ 1 N F) r 0 and hence 

x~ E F - 1 K  for each a. Thus {As} is tight and therefore it is relatively compact  

(cf. [St]). In particular, T ,  n A is compact,  as both  T,  and A are closed. The last 

assertion easily follows now as, if V is a compact neighbourhood of the identity 

e in G, then for a sufficiently small neighbourhood U of 5~, A(V) >_ 1/2, for all 

A E U .  I 

For a measure # E MI(G)  and n _> 1 let ca(K) = supxec t tn (Kx) ,  for any 

compact  subset K of G; c~ are called the c o n c e n t r a t i o n  f u n c t i o n s  o f  #. 

We now note a Lemma which is a consequence of a result on concentration 

functions in [DS]. 

LEMMA 2.2: Let G be a Lie group with finitely many connected components. 

Let R be the radicaI of  G and suppose that the center of G ~  is finite. Let  

A E M 1 (G) be such that the concentration functions of A and A fail to converge 

to zero. Then there exist a continuous one-parameter subgroup r and a compact 

subgroup L such that G(A) C r x L and supp A C xL  for some z = r 

Proof: Since the concentration functions of A do not converge to zero, under 

the condition on G as in the hypothesis as above, Theorem 3 of [DS] yields the 

following: there exist a closed subgroup C C G and closed normal subgroups 

H ,  N of C such that  G(A) C C, N is simply connected and nilpotent, H / N  is 

compact,  C / N  = r x H / N  for some (possibly trivial) one-parameter  subgroup 

r  and for every x E supp A, supp A C x H  = H x  and the conjugation action of 

x on N is a contraction (cf. Theorem 3, [DS]). Since the concentration functions 

of A do not converge to zero and C / R  ~ is compact,  where R r is the radical of 

C, there exist a closed subgroup C C C such that  G(A) C C and closed normal 

subgroups /~ and N such that  N is simply connected and nilpotent, / ~ / N  is 

compact,  C / N  = r  x / ~ / N  for some (possibly trivial) one-parameter  subgroup 

r  and for any y E supp ~, supp A C y H  = / ~ y  and the conjugation action of 
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y contracts N. Since C / N  = r • H / N ,  and x -1 contracts N, it easily follows 

that N C N. But N N/Y is trivial as both x and x -1 contract N V~/Y and hence 

/V is trivial. This implies that G(A) = G(A) C r • L, where L = / ~  is compact, 

Ct = ~b~t and supp )~ C xL  = Lx, where x can be chosen such that  x = r 
| 

We recall that a locally compact group G is said to be a lmos t  c o n n e c t e d  if 

G / G  ~ is compact. Given a locally compact group G, G/G ~ is totally disconnected 

and hence zero-dimensional and so G admits open almost connected subgroups. 

PROPOSITION 2.3: Let G be an almost connected group. Suppose that A E 

MI(G)  is such that the concentration functions of both A and A fail to converge 

to zero. Let  x E supp A. Then {A~x -n } and {x-SA n } are tight and all their limit 

points are respectively right and left translates of WH for some fixed compact 

subgroup H. Also, supp A C H x  = xH.  

Proof." Since G is almost connected, G is Lie projective. There exist compact 

normal subgroups K~ such that M~K~ ---- 0 and G is a projective limit of Lie 

groups Ga = G/Ka ,  with finitely many connected components. Now the asser- 

tion holds on G if and only if the images of {A'~x -'~} and {x-~A ~ } on each G~ are 

tight and all its limit points are respectively right and left translates of an idem- 

potent WH~, for some Ha. Therefore without loss of generality, we may assume 

that  G is a Lie group with finitely many connected components. Then by Propo- 

sition A.1 (see Appendix), we may further assume that G satisfies the condition 

in the hypothesis of Lemma 2.2. Then by the Lemma, there exists a (possibly 

trivial) continuous one-parameter subgroup r and a compact subgroup L such 

that  G(A) C r x L and supp A C yL, where y = r Therefore, {Anx -~} and 

{x-hA n } are contained in MI(L)  and hence they are tight. Let u = y - lA = Ay -1. 

Then supp u C L and {u n} is a compact semigroup. There exists a unique idem- 

potent w/~ in this semigroup and all the limit points of {u ~} are of the form 

aWH : WHa (for some a E G), i.e. two sided translates of WH. Since x E supp A, 

x = yl = ly for some 1 E L. Then for each n, A'~x -'~ = A~y-nI -~ = u'~l -'~, 

and similarly, x-~A ~ = l -nu  ~. Therefore, the limit points of {A~x -~} (resp. 

{x-~),n}) are right (resp. left) translates of WH. Clearly, supp A C x H  = Hx.  

This completes the proof. | 

The following Theorem plays an important role in our construction. 

THEOREM 2.4: Let G be any locally compact group and let It E MI(G) .  Let 

V be a neighbourhood of the identity in G contained in an almost connected 
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subgroup of  G. Let A E M 1 (G) be such that A(V) > O. Suppose that A n E T ,  

for all n. Then supp A C xI (# )  = I (#)x ,  where x E V N I~. 

Proof: Since A n E T ,  for all n, there exist sequences {xn} and {yn} in G, such 

tha t  {Anxn} and {yn)~ n} are t ight (cf. [He], Theorem 1.2.21). T h a t  is, given e ~ 0, 

there  exists a compac t  set K such tha t  Anxn(K) > 1 - ~ and ynAn(K) > 1 - ~, 

for all n. Therefore  the concentra t ion functions of bo th  A and ~ fail to converge 

to zero. Hence by Theo rem 2.18 of Jaworski  et al. [JRW], ei ther G(A) is compac t  

or G(~k)/N~ is infinite cyclic, where N~ is the smallest  closed normal  subgroup  

of G(~)  such t ha t  supp A C xN~,  for some x E G(~).  

Since ,k(V) > 0, x as above can be chosen to be contained in V. If G is 

to ta l ly  disconnected then  x generates a compac t  subgroup,  say Gx. But  then  

G(;~) C GxNx,  which implies tha t  G(A)/Nx is compact .  Hence f rom the reduct ion 

as above G(A) is compact .  

Since G / G  ~ is to ta l ly  disconnected and the concentrat ion functions of the image 

of A on G / G  ~ do not converge to zero, f rom the above arguments ,  it follows 

tha t  G(~)  is compact .  This  implies tha t  G(A)G~ ~ is compact .  

Let  M = G()~)G ~ Then  M is an a lmost  connected group. Let  x E suppA. 

Then  by Propos i t ion  2.3, {Anx -~}  (resp. {x-nAn})  is t ight and if u (resp. u ')  

is any limit point  of it then u -- c~Hy for some y E supp u (resp. u I = y 02 H for 

some y~ E supp u ~) for some compact  subgroup H such tha t  supp A C x H  = Hx .  

Therefore  WH is a limit point  of {,V~x-ny -1} (resp. {y'-lx-n~n}). Since ,~n E T~ 

for all n, it follows tha t  a) H E Tit and hence H C I(/~). Since supp ~ C x H  = Hx ,  

A# = x#  = #,~ = #x  and hence x # x  -1 = #. This implies t ha t  x I ( # ) x  -~ = I(#)  

and supp ,k C x I (# )  = I(l~)x. This completes  the proof. | 

Let  J ,  = {,k E MI(G)I  ,k/t = #,~ = #}. Clearly, J~ is a compac t  semigroup 

and for any ,~ E M I ( G ) ,  ,~ E Ju if and only if suppA C I (# ) .  

The  proof  of L e m m a s  2.5 and 2.6 are similar to tha t  of L e m m a  3.1 in [$3]. 

LEMMA 2.5: Let G and # be as above. Let U and W be neighbourhoods of J t, 

in M I ( G ) ,  with W C U. Let V be a relatively compact neighbourhood of e in G 

such tha t  VI( t t )G  ~ is contained in an almost connected subgroup of  G. Suppose 

that there  exists a 5 > 0 such that A(VI(#))  > 5 for ali ~ E U. Then there  

exists  an n such that for m >_ n, # cannot be expressed as # = )~1 "'" Am with 

~ 1 , . . . ,  )~,~ E T ,  M U \ V W  and )~i's commuting with each other. 

Proof: Here, V C {)~l )~(YI(~)) > 5 > 0} and since V I ( # )  is compact ,  by 

L e m m a  2.1, T u M U  and hence T u M U \ V W  is compact .  Let  ~ E U \ V W .  

Suppose,  if possible, ,V ~ E T t, for all n. Then  by Theo rem 2.4, supp A C x I (# )  = 
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I (#)x .  Since A(VI(#))  > 5 > 0, this implies tha t  x �9 VI (#) ,  and hence ~ �9 VJ~, 

which is a contradict ion since ,~ r V W .  Thus for any ~ �9 T ,  N U \ V W ,  there 

exists n(A) such tha t  A n(x) r T~. Let V ~ be a neighbourhood of ~(:~) such tha t  

V '  n T ,  = ~ and let V~ be a neighbourhood of ), such tha t  V~ (~) C V' .  Now 

since T~ N U \ V W  is compact ,  there exist ~1, . . .  , Al �9 T~ n U \ V W  such tha t  
l l T t, N V \ V W  C [-Ji=~ V~. Choose n = ~i=~ n(A~). Now, the assertion clearly 

holds for this n. | 

LEMMA 2.6: Let G be a totally disconnected locally compact group and let A 

be a commutative infinitesimal triangular system converging to p. Then given a 

neighbourhood U of J~ in MI(G) ,  # has a U-decomposition. 

Proof: Withou t  loss of generality we may assume that  

U = {)~ �9 MI (G) I  .~(VI(#)) > 6} 

for some relatively compact  neighbourhood V of e in G such tha t  the condit ion 

in the above L e m m a  holds, and for some fixed 5 > 0. Let W and W '  be neigh- 

bourhoods  of J~ and ~e respectively such tha t  W '  C W and W W '  C U. We 

apply the above Lemma to U, V and W, and let n be as in the conclusion of  the 

Lemma.  Let A '~ = (#~J)ieN,j=l" Since A is infinitesimal, there exists i0 such tha t  

i > io, #ij C W '  for all j .  

We define sequences {x~k}~=l and {y~} as follows: let i > i0 be given and 

let { m 0 , . . . ,  mn} be defined inductively as follows: set m0 = 0 and, after mk is 
m 

defined for a k < n, let mk+l be the smallest m such tha t  I-Ij=mk+l #~J ~ V W  

if m k <  ni and such an m exists, and mk+l  ---- ni if either of the conditions 
m k  fails. For 1 < k < n, let Ik ---- mk-1  and xik = I-Ij=lk+l #ij, if rrtk_ 1 < ni, and 

x~k = 5e otherwise. Let Yi = H~=m,+l#~j if mn < n~, otherwise Yi --= he. Clearly, 

all Xik E V W W '  C V U  and either Yi = (~ or all xik are outside V W .  Since 

all xik �9 T~, for each i, by Lemma 2.1, {xik} is relatively compact  for each k, 

and so is {Yi}- Therefore, passing to a subsequence and altering the nota t ion 

sui tably we may assume tha t  {Xik} and {y~} converge to (say) xk and y, in T~, 

respectively. Then  all Xk'S and y commute  with each other and Xl . . . x ,~y  = tt. 

Also, since x~k �9 V W W ' ,  for all i, xk �9 V W W '  C V U  (as V is compact  and 

W W '  C U). Here, since G is total ly disconnected one can choose V to be an 

open  compac t  group and then V = V and VU = U and hence Xk �9 U. If  y = ~ ,  

then the  above is a U-decomposi t ion of/z .  If y r 6r then the set {i: y~ = ~ }  

cannot  be cofinal. Hence xk = limxik r V W  for all 1 < k < n, by L e m m a  2.5, 

which is a contradict ion to the choice of n. This proves the Lemma.  | 
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LEMMA 2.7: Let G be a locally compact group and let A and It be as above. 

I f  A is symmetric then, for ~ny neighbourhood U of J~, in MI(G) ,  # has a 

U-decomposition. 

STEP 1: Let N(I (# ) )  be the normaliser of I (# )  in G. Since I(it)  is a com- 

pact  normal  subgroup in N ( I ( # ) ) ,  there exists an open subgroup N of N(I (# ) )  

containing I (# )  such tha t  N is Lie projective. Let K~ be the compact  normal  sub- 

groups of N such tha t  N is the projective limit of the Lie groups No -- N / K s .  

Consider the group N p -- N / I ( # ) .  Then N p is the projective limit of the Lie 

groups N~ = N / ( I (# )K~) .  Let a be fixed. There exists a ne ighbourhood V~ of 

the identi ty ~ in N~ such tha t  i fx  C V~ \ {~} ,  x 2 r ~. Let V~ be the inverse image 

of V~ in N.  Then  V~ is open in N and hence in N(I( t t ) )  and if x c V~, such tha t  

x 2 E I ( # ) K ~ ,  then x E I (#)K~.  Let V be a relatively compact  ne ighbourhood 

of identi ty in G such tha t  V -- K ~ V  and VI (# )  M N( I (# ) )  C Va. Withou t  loss 

of generali ty we may assume tha t  U = {A[ A(VI(#) )  > 5} for some fixed 5 > 0. 

Then  K~U = U. 

STEP 2: Let W and W p be neighbourhoods of J~ and 5~ respectively such tha t  

W ~ C W,  and tha t  W W  ~ C U. Let A C T~ N U \ K ~ W  be a symmetr ic  measure, 

and suppose if possible tha t  A n E T~ for all n. Then  by Theorem 2.4, supp A C 

xI (#)  = I(i t)x and x 2 E I (p )  for any x E supp A. Since A(VI(#) )  > ~ > 0, this 

implies tha t  x E VI (p ) ,  and by the choice of V in step 1, x E K j ( # ) .  Therefore 

suppA C y I (# ) ,  for some y E Ks ,  and hence A C K~J~. This is a contradict ion 

as A (L K ~ W .  Now since T~ M U is compact ,  as in the proof  of Lemma 2.5, one 

can choose n such tha t  for m _> n, # r A1---Am, for any mutual ly  commut ing  

symmetr ic  measures A1 , . . . ,Am such tha t  A1 , . . . ,An  E T ,  M U \ K ~ W .  Now 

using this and the fact tha t  K ~ W W  ~ C K~U = U, one can easily prove, along 

the lines of the proof  of the previous Lemma,  tha t  # has a U-decomposit ion.  

I 

Let S be a semigroup with identi ty e. Elements s , t  E S, are said to be 

a s s o c i a t e s  if s -- s~t -- ts ~ and t -- t~s -- st p for some s ~, t t C S. A subset A of S 

is said to be a s s o c i a t e f r e e  if s, t c A are associates, then s = t. An  element s is 

said to be b a l d  if for any idempotent  h C S if hs -- sh -- s, then h -- e. 

PROPOSITION 2.8: Let G be a locally compact first countable group and let A 

and # be as above. Then i f  G is totally disconnected or if  A is symmetric, then 

there exists # dosed commutative subsemigroup S or M~(G(#)  ) with identity 

WH such tha t  It C S, Iz is bald and infinitesimally divisible in S, and T~ (in S) is 

compact and associatefree. 
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Proof: The first part  of the proof is similar to Proposition 3.2 in [$3]. We give 

the whole proof here for the sake of completeness. 

Given a neighbourhood U of J~, by Lemmas 2.6 and 2.7, p has a 

U-decomposition. Since G is first countable, one can find a neighbourhood basis 

{Uk[ k �9 N} of J~ such that  Uk+l C Uk. 

Now for k �9 N, let # = Sl . . .  s,~(k) be a Uk-decomposition of # obtained as 

in Lemma 2.6; here st = lim~-~oo HjeA(i,t)tzk(i)j, where {k(i)} C N is a fixed 

sequence for all I and A( i , l )  C {1 , . . . ,  hi} depends on i and l, and for fixed i, 

A( i , l )  are disjoint. Now using the subsystem (Pk(i)j)ieN,jeA(~,O, one can get a 

Uk+l-decomposition of st = st1 " �9 Slmq), such that  st~Spq = SpqSl,~ for all l, n, p, q. 

Here, for all I and n, sln = limi-~oo HjeA(i,Z,n)#(k+l)(i)j, where {(k + 1)(i)} is a 

fixed subsequence of {k(i)} and A(i,  l, n) C A(i,  l) depends on i, l, n. We continue 

this process. 

For k �9 N, let Mk be the semigroup generated by { s k i , . . . ,  skin(k) } in M 1 (G), 

where # = Skl""sk,~(k) is the Uk-decomposition of # obtained in the above 

manner.  Then for all k, Mk C Mk+l, Mk is abelian and # �9 Mk. Let $1 = 

[Jk Mk.  Then $1 is an abelian semigroup containing p. Also, each a in $1 is a 

limit of Uk-decomposition in $1 for small neighbourhoods Uk of J~. Let a �9 $1 

such that  I ( a )  c I (#) .  Then J~ C J~. Arguing as in Lemmas 2.5-2.7 and using 

that  T~ A U is compact for a small neighbourhood U of J~, and that  J~ is a 

compact  semigroup, one can show that  a has a U-decomposition in $1 for every 

neighbourhood U of J~. 

Now let J = J~ N $1. Then J is a nonempty compact abelian semigroup. Since 

I (# )  is compact,  a simple calculation shows that,  given any neighbourhood Uj  of 

J in $1, there exists a neighbourhood U of Jr, such that  U A $1 C Uj. Therefore 

# and each a �9 $1, such that  I ( a )  C I(#) ,  have a U j-decomposition for every 

neighbourhood Uj of J in S1. 

Since J is a compact abelian semigroup, there exists a maximal idempotent 

1 = WL in J ,  where L is some compact subgroup of I (#) .  Then J '  = Jl  is a 

compact  abelian group and $2 = Sl l  is an abelian semigroup with identity I. Let 

H = {x �9 G[ such that  xl �9 J ' } .  Then H is a compact subgroup contained 

in I(tt);  let h = W H .  Clearly, h # = t t ,  J ' h =  J h =  {h}. Now for a n y x  �9 H,  

and A �9 $2, xA = xlA = A(xl) = Alx = Ax. This implies that  hA = Ah for all 

A �9 $2. Let S -~ S2h = S lh .  Then  S is an abelian semigroup, with identity 

h and # �9 S. Let U be any neighbourhood of h. Since J is compact,  there 

exists a neighbourhood W of J such that  W h  C U. Now if # = A1 . .-  A,~ is a 

W-decomposit ion in $1, then each h A i =  A~h �9 W h  A S l h  c U N S for all i and 
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h a l ' "  h/~n = h~Ai ' ' '  A~ = h# = #. Thus # has a U-decomposi t ion in S for 

every ne ighbourhood U of h. Let c~ E T ,  in S; then a = a ' h  for some a '  E Si 

and c/hb  = bhc/ = # for some b and hence I (a ' )  C I (p) .  Now from the above, 

' is a W-decomposi t ion  of c~' in Si for a neighbourhood W of J .  O~ I = C~i . . .OL n 

Then  c~ : (~h = c ~ h . . ,  c/nh is a U-decomposi t ion of c~ in S, where W h  C U. In 

particular,  any c~ E T ,  is infinitesimally divisible in S. 

Let U be a neighbourhood of h, such that  U = {L, E MI (G) I  u ( V H )  > 5 > 0} 

for some relatively compact  neighbourhood V of e in G and some (~ > 0, such 

tha t  if G is total ly disconnected then V is any open compact  group normalised 

by I (# )  and if A is symmetr ic  then V is chosen as in the proof of Lemma 2.7. 

Let A,u E T ,  (in S) be associates. Then there exists A', u' E S such tha t  

= ~'~ and v = u'~. Therefore supp,Vu'  C I (~)  C I (#) .  Then  supp~ '  C 

x I ( # )  = I ( # ) x  for some x E supp A~. Let Ar = Ul " "  u~ be a U-decomposi t ion of 

A'. Then  suppu i  C x i I ( # )  = I(#)x~,  xi E V.  Hence if G is totally disconnected, 

V is an open compact  subgroup normalised by I (# )  and hence supp ~ C V I ( # ) .  

Since this holds for all such V which form a neighbourhood basis of identi ty in G, 

supp A~ C I (# ) .  If A is symmetric,  then each element of S is symmetr ic  and hence 

x 2 E I (# )  for all i. From the choice of V, we get tha t  xi E I(#)K,~ = K j ( I X )  for 

all i and hence suppA'  C / ( # ) K s ,  where K s  C V is a compact  subgroup as in 

Lemma 2.7. Since V forms a neighbourhood basis of identity in G, supp ,V c I (#) .  

Thus  in bo th  the cases, suppA t C I (#) .  But  since A' = o/h  for some c~' E $1, 

supp c~' C I (# )  and hence c/ E Ju ; '/$1 = J .  This implies tha t  A' E J h  = {h} 

and hence A = u. Tha t  is, Tu in S is associatefree. 

Now let a E S be an idempotent  such tha t  a#  = #a  = ix. Then  supp a C I(ix). 

Then  arguing as above, we get tha t  a = ah = h. This proves that  # is bald in S. 

We now show tha t  T u in S i s  compact .  Let U and V be as above. Let W 

be a ne ighbourhood of h such that  W W  c U. Now if A E T u n U " . W  and 

A n E Tu for all n, then suppA C xI(ix) = I(ix)x,  for some x (cf. Theorem 

2.4). Since A is infinitesimally divisible, arguing as above one can get tha t  in 

bo th  the cases, supp,~ C I(ix) and hence A = h, a contradict ion as A r W.  

Now if u E Tu, T .  C Tu, and hence by the above argument,  as in L e m m a  2.5, 

there exists an n such tha t  for m >_ n, u 7~ ~1 . . .  "~m in S, if ,~ 's  commute  and 

,~l,...,)~n E T ,  n u ' .  w .  

Let {Ak} C T u (in S). Since for each k, Tx~ C Tu and ~k is infinitesimally 

divisible, using the above and arguing as in Lemma 2.6 (with U and W as above), 

there exists an n such tha t  Ak ---- Akx "'" ~k~ is a U-decomposi t ion for each k. This 

implies tha t  Ak E U ~, i.e. A k ( V H )  n > ~ for each k! Since H is compact  and V is 
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relatively compact,  this together with Lemma 2.1 implies that  {Ak} is relatively 

compact.  This implies that  Tu in S is compact.  

I t  remains to show that  S C M~(G(#)) .  Since S is generated by Tu, it is 

enough to show that  the elements of Tu are supported on G(#). Clearly, H c 

G(#). Let ~ ~ T u. Then supp a C xG(#) = G(#)x for any x E supp a. Since a is 

infinitesimally divisible in S, 5 = xG(#) is infinitesimally divisible in N(# ) /G (# ) .  

Tha t  is, 5 = 51""5 ,~  for any neighbourhood V of identity ~ in N(Iz)/G(~),  

where N(#)  is the normaliser of G(#). Now if G is totally disconnected then 

open compact  subgroups V form a neighbourhood basis of ~ and hence 5 E V for 

all such V, therefore 5 = ~, i.e. supp a c G(#). Now if A is symmetric then the 

elements of S are symmetric and hence 52 = ~ for all i. Let L be an open Lie 

projective subgroup of N(#) /G(#) ;  let K~ be the compact normal subgroups of 

L such that  L is a projective limit of L/K~.  Then as in the proof of Lemma 2.7, 

one can choose small neighbourhoods V~ such that  if xi E V~ such that  52 = ~, 

then 5~ E K. r for each % Therefore 5 E K~ for all 3' and hence 5 -- ~, i.e. 

s u p p a  C G(#). In fact, the above gives that  for any a E Tu, elements of T~ are 

supported on G(a) .  This completes the proof. | 

For a semigroup S with identity e, an element s E S is said to be w e a k l y  

i n f i n i t e s i m a l l y  d iv i s ib le  if given any neighbourhood U of e in S there exist 

s l , . . . , s n  C U and an invertible element u C S such that  s = u s l . . . s n ,  si's 

commute with each other and also with u. The following proposition shows 

the existence of an abelian semigroup containing the limit # of a given triangular 

system under a more general set up such that  # is weakly infinitesimally divisible. 

P R O P O S I T I O N  2.9: Let G be a locally compact first countable group and let 

A be a commutative infinitesimal triangular system converging to #. Suppose 

that I ~  ~ N Z) is compact. Then there exist a Hausdorff abelian semigroup 

S in M 1 (G) with identity WH and an equivalence relation ~ on S such that 

# E S, and if~r: S --4 S' = S/, ,~ is the natural projection then 7r(#) is bald and 

infinitesimally divisible in S ~ and T~(~) is compact. Moreover, for any a E Tu and 

any neighbourhood U of WH in S, there exist A1,.. �9 An E U and an invertible 

element u C S such that a = A1 ""  AnU where u = ~ �9 WH for some x E I ~ 

Proof: Let H be an open subgroup of G such that  H / G  ~ is compact.  Then H is 

Lie projective. Let ( / in}  be a decreasing sequence of compact normal subgroups 

such that  each H / K n  is a Lie group and ~ n  Kn = {e}, the trivial subgroup. Let 

H ~ = H N I~,. Then H ~ is an open subgroup in I~ and it is a projective limit 
i 0 of H~ = H ' / K ~  where K~ = Iu M Kn. Then KnG ~ is open in G and Knit ,  is 
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open in It*. Let  V be an open relatively compac t  ne ighbourhood of e such t ha t  
t 0 K ~ V  = V, V C KInG ~ and V M It, C K m I  ~ for all m. 

We fix a 5 such tha t  0 < 5 < 1, and let U = {A C M I ( G ) ]  .~(VI(#)) > 5} be 

a ne ighbourhood  of Jt*. By L e m m a  2.1, Tt* M U is compact .  Let  A C U be such 

t h a t / ~  C Tt* for all n. Then  by Theorem 2.4, supp )~ C x I (#)  = I (# )x  for some 
l 0 I 0 x C V N It* C KmIt*. Then  G(A) C K~It*I(#).  Since I ( p )  is compact ,  wi thout  

loss of general i ty  we may  assume tha t  I (# )  C H .  

Now we can define an equivalence relation ' ~ '  as follows: for v, v ~ E MI(G) ,  

v ~ v '  if v = zv '  for some z E I ~ N Z. Then  M'(G) = MI(G) / , .~  is a semigroup 

and the corresponding m a p  1rl: MI(G)  --~ M~(G) is a continuous open homomor -  

phism. Since I~176  is compact ,  7rl (A) generates  a compac t  semigroup,  in fact  
t 0 since 7rl(A) = ~l(Sz)Trl(v) = 7rl(v)Trl(Sz) where s u p p v  C I (# ) ,  x E KmI~I(t t ) ,  

we have tha t  7r1(5~) generates  a compac t  group. Also T~l(t*) M 7fl(U) is compact .  

Let  K ~ = 7rl(I~ which is a compac t  group. Let W and W ~ be respect ively 

ne ighbourhoods  of dt* and 5~ such tha t  W ~ C W,  K ~ W  = W and W W  ~ C U. 

Let A be such t ha t  ~I(A) E K'ZCl(U) ". K'Trl(W). Then  there  exists an n such 

t ha t  ~rl(), ~) ~ T~(t*) as, otherwise for every n, ~rl(A) '~ E T~(t*) then  A ~ E T~, 

and since ~I(A) E K'Trl(U), this implies tha t  suppA C x I ( # )  = I (# )x  for some 
i 0 x C K ~ I ~  and hence 7rl(A) E K'Trl(K~Jt, ) C K'Trl(W), which is a contradic-  

tion. Using this, as in L e m m a  2.5, one can show tha t  there exists an n such 

t ha t  for any m _> n, ~1(#) # 7rl(A1)-..  ~l(Am), with Ai's commut ing  wi th  each 

o ther  and 7rl(A1),. . .  ,Tr()~n) E Kt~zl(V)\KtTrl(W). Now using this and the  

fact t ha t  W W  ~ C U, as in the proof  of L e m m a  2.6, we get tha t  7rl(#) has a 

KtTr l (U)-decomposi t ion  in Mr(G). Since G is first countable,  as in the proof  

of Propos i t ion  2.8, there  exists an abel ian semigroup S1 such tha t  7rl(#) has 

a K ' U - d e c o m p o s i t i o n  for all ne ighbourhoods  U of j r ,  where K "  = K ~ M $1 is 

a compac t  group and J '  = zrl(J)  = 7rl(Jt*) CI S1, where J C Jt* is a compac t  

semigroup.  Moreover,  for any 7rl(c~) C S1, such tha t  T~ C Tt*, 7rl(C~) has a 

K " U - d e c o m p o s i t i o n  in S1. 

Now since J is a compac t  abel ian semigroup,  it has  a max ima l  idempoten t  

say l, where  l = co L for some compac t  subgroup  L of G. Then  Jl is a compac t  

abel ian group. Let  l '  = ~rl(l), J "  = J'l '  and let $2 = Sll' .  Then  J "  (resp. $2) is 

a compac t  abel ian group (resp. closed abel ian semigroup) wi th  ident i ty  l'. Let  

H = {x ~ I(#)1 xl ~ J}.  Then  H is a compac t  a b e l i a n g r o u p .  Let  h = WH, 

h' = 7c(h), K = K"h '  and S~(h) = S2h' = Slh' .  Then  K (resp. S2(h)) is a 

compac t  abel ian  group (resp. closed abel ian semigroup)  wi th  ident i ty h ~. Also 

J'h '  = J"h '  = {h'},  ~rl(#)h'  = n~(#) ~ S2(h). Moreover,  as in the  proof  of 
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Proposition 2.8, one can get that  7r1(#), and also each 71"l(Ot ) E T~rl(tt), has a 

KU-decomposi t ion for every neighbourhood U of h ~. Also, T~I(~ ) is compact.  

Here, K = zc~(I~ ' M S2(h). Now as in the Remark before Proposition 4.4 in 

[$3], we define another equivalence relation '-~' on Sl(h) as: 

a, b c S 2 ( h ) ,  a ~ b  i f a - - k b f o r s o m e k C K .  

Let S '  = S2(h)/ ~ and let 7r2: S2(h) ~ S' be the natural projection. Let 

7r -- 7r2 o 7rl and let S = zr-l(S~). Then ' ~ '  is the equivalence relation defined 

by 7r. Clearly, S is an abelian semigroup with identity h, r (# )  is bald and 

infinitesimally divisible in S ~ and T~(~) is compact and associatefree (see [$3] 

for details). Moreover, it is easy to see that  any a E T~ satisfies the condition 

mentioned in the statement of the proposition. I 

3. P a r t i a l  h o m o m o r p h i s m s  

In this section we construct the partial homomorphisms required to show the 

(shift-)embeddability of the limit of a triangular system. 

Given a Hausdorff abelian semigroup S with identity e, for a A E S, a map 

f~: T~ -+ R+ is said to be a A-no rm  if it is continuous at e and it is a partial 

homomorphism, i.e.f.x(AiA2) = f.x(A1) -t- f~(A2), if A1, A2, A1A2 C Tx. 

LEMMA 3.1: Let G be an almost periodic group and let H be any compact 

subgroup of G. Let A E M~(G) be such that A is infinitesimally divisible in 

M I  (G). IfAA is an idempotent, then AA = WH and hence A = 5xWH = WH~x for 

some x E supp A. 

Proof'. Since G is almost periodic, the finite dimensional irreducible unitary 

representations separate points of G. For any irreducible unitary representation 

(L/,7-/), the map M I ( G )  ~ BL(7-/), defined by # ~-~ fU(g)d# ,  is a continuous 

homomorphism. 

Let AA = WH,, for some compact group H ~ and H C H ~. We have to show 

that  H '  = H.  Let U be a neighbourhood of ~d H in MI ( G) ,  such that  /g(U) 

consists of invertible elements in the subalgebra B generated by /d (M~ (G)). Since 

A is infinitesimally divisible in MI(G) ,  /d(A) is invertible in B. Since/d(A) is 

the adjoint of/g(A), /d(AA) = ld(wH,) is also invertible in B. Tha t  is, there 

exists A E B such that  Lt(WH,)A = A~(OgH, ) = ~ ( W H )  and hence ~(02H, ) = 

ld (WH)U (WH, ) = ALt(wH, )bl(wH, ) = ALt(wH, ) = 1A (WH ). Since this holds for all 

L/, we have that  H = H' (cf. [He2], Theorems 1.3.3 and 1.3.8), and AA = wg. 

Since A E M I ( G ) ,  A = WH~ = WHh~. I 
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LEMMA 3.2: Let G be a totally disconnected locally compact group and let H be 

a compact subgroup of G. Let A E M~ (G) be infinitesimally divisible in M ~  (G). 

If A is a translate of an idempotent then A = WH. 

Proof: Let A -- 5xWH, for some compact subgroup H '  of G. Let {Hv} be 

a neighbourhood basis of identity consisting of open compact subgroups of G 

normalised by H '  and let {U.~} be the neighbourhood basis of WH such that for 

each n, f i(HvH) > 1/2 for all /3 CUv. Now since A is infinitesimally divisible 

in S, for any fixed % there exist A1,. . . ,  Am C U-y, commuting with each other, 

and such that A -- A1 ""Am. Since Ai's commute, suppAi C xiH',  for some 

xi E supp Ai A H.rH , supp Ai c HvH' for each i. Therefore supp A C HvH t for 

all ~. 

Also N~ H.yH' = H', and thus supp A C H' .  Therefore, A = WH,, namely A it- 

self is an idempotent. Clearly, H C H' .  Now since A = WH, is also infinitesimally 

divisible in M~(H.yH'),  for a fixed ~, and H.yH' is a compact group, by Lemma 

3.1, A = 03 H. m 

PROPOSITION 3.3: Let G be almost periodic. Let S be a closed abelian subsemi- 

group of M~t(G ) with identity ~d u .  Let A E S be such that A is not a translate 

of an idempotent and A is infinitesimally divisible in S. Then there exists a 

continuous A-norm f~ on S such that f~(A) > 0. 

Proo~ Since A is not a translate of an idempotent by Lemma 3.1, v = AA is 

not an idempotent. Hence there exists a continuous finite-dimensional unitary 

representation (/d, 7/) of G, such that b/(v) 2 # /4 (v )  (cf. [He2], Theorems 1.3.3 and 

1.3.8). We note that  Ll(wg) is a (self-adjoint) projection. Let 7-/' be the range of 

~4f(09H). Let O: M~(G) --+ BL(7/') be defined by setting t~(a) to be the restriction 

of L/(a) to 7-/', for all a E MI (G) .  Then p is a continuous homomorphism. Let 

7-/" be the kernel of Lt(WH). Then 7/ = 7/' @ 7/". Moreover, 7-/" is contained 

in the kernel of L/(u), in particular, L/(v)(x) = /A(v)2(x) for all x E 7-/". Now 

since L/(v) 2 ~t L/(v), O(v) 2 r Q(v) and since Q(v) is self-adjoint and positive 

and [[Q(v)H < 1, this implies that there exists an eigenvalue a of O(v) such that  

0 < a < 1. Then [ det(Q(A))[ 2 = det(Q(v)) < 1. Since A is infinitesimally divisible, 

as shown in Lemma 3.1, /g(A) is invertible in the subalgebra of BL(7-l) with 

identity IA(WH). Therefore Q(A) is invertible in BL(7-t') and hence [ det(t~(A))[ > 0. 

That  is, 0 < [ det(t)(A))[ < 1. Hence det(0(a)) r 0 for all a E T~ in S. Now we 

define fx: Tx -+ R+ as follows: fx(a) = - log [de t (o (a ) ) [ ,  for all a C T~. Then 

it is continuous, f~(A) > 0 and if ,~1~2 C TA, then  fA()~x/~2) = f~()~l) {- fA(~2). 
| 
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THEOREM 3.4: Let G be a compact extension of  a closed solvable normal sub- 

group. Let S be a dosed abelian subsemigroup of M ~ ( G )  with identity wg.  Let 

A C S be such that the identity e E supp A and A is not an idempotent. Suppose 

that each a E T~ is infinitesimally divisible in S and it is supported on G(A). 

Then there exists a continuous A-norm f~ on S such that f~(A) > 0. 

Proof5 Since S is abelian, for any a E Tx, T~ C Tx, and hence if S t is the 

closed abelian subsemigroup generated by T~ in S, then each a C Tx is infinites- 

imally divisible in S t. Hence without loss of generality, we may assume that  S 

is generated by T~. Then we have that  all the measures in S are supported on 

G(A). Since e E supp A and A is not an idempotent, A cannot be a translate of 

an idempotent.  

STEP 1: Suppose that  G is compact. G is almost periodic and the assertion 

follows from the previous Proposition. If G(A) is compact, then we may take 

G -- G(A) and the assertion follows. 

STEP 2: Now suppose that  G(A) is not compact. Let R be a closed normal 

solvable subgroup such that  G / R  is compact and let 7r: G -+ G / R  be the natural  

projection. Then 7r(S) is a compact abelian semigroup with identity 7r(WH) and 

~r(A) is infinitesimally divisible in 7r(S). 

If 7r(A) is not a translate of an idempotent then there exists a continuous ~r(A)- 

norm on ~r(S) such that  f~(~)(Tr(A)) > 0 (cf. Proposition 3.2). Let fx: T~ -+ 

be defined as follows: f x (a)  = f,~(;~)(zc(a)) for all a E Tx. Then f.x is the desired 

A-norm. 

STEP 3: Let ~r(A) be a translate of an idempotent. Then since e E suppA, 

~r(A) is an idempotent.  7r(A) is infinitesimally divisible in 7r(S), by Lemma 3.1, 

7r(A) = W~(H). Then G(A) C H R  and since H R / R  is compact, without loss of 

generality we may assume that  G --- HR.  

Now we prove the rest of the assertion by induction on the length n of R, i.e. 

the smallest n such that  R~ = {e}, where RI -- [R, R] and Rm+l : [Rm, Rm] for 

all m C N. 

S T E P  4 :  ' For this step, we only assume that  A is not a translate of an idempotent.  

Let n = 1. Tha t  is, R i s  abelian. Then H M R i s  normal in G. Let G I -- 

G / ( H  M R) and let rt:  G --+ G I be the natural projection. Then G' = H~R ~, a 

semidirect product  of H'  = H / ( H  M R) and R' = R / ( H  M R). The projection of 

7d(a) on H ~ = G I / R  ~ is wg, = 7d(WH) for all a E S. For any a E S, let a ~ be the 

projection of lr ' (a)  on R'.  Then a' * WH, = WH, * a '  = lr ' (a) (cf. [HS], Lemma 

4.3). Let S'  = {a'  C MI(R ' ) I  a e S}. Then S' is a closed abelian semigroup with 
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identi ty ~ and a F-+ a '  is a continuous homomorphism and A' is infinitesimally 

divisible in S ' .  Suppose A' is a t ranslate of an idempotent .  Since R is abelian, 

it is a lmost  periodic, by L e m m a  3.1, A' = 5~. This implies tha t  A is suppor ted  

on a coset H and it is ~WH, a contradiction. Thus  A' is not  a t ranslate  of an 

idempotent  and from Sta tement  6.1 of JR2] there exists a continuous A'-norm f~, 

on S '  such tha t  f~,(A') > O, and hence one can define f,x(a) = f ,v(o/) .  

STEP 5: Now suppose tha t  the theorem holds when n < k - 1 and let n = k. 

Let  zc:: G --+ G/R1 be the natural  projection. Since R / R :  is abelian, if zr:(A) 

is not  a t ransla te  of an idempotent  then, from Step 4, there exists a continuous 

A'-norm f,~:(~): T~:(~) --+ ~ such that  f~,(~)(zr:(A)) > 0. Let f~: Tx --+ 

be defined as follows: f x (a )  = f~:(x)(Tr:(c~)), for all a �9 Tx, and the assertion 

follows in this case. 

STEP 6: I f  71- I ( A )  is a t ranslate  of an idempotent ,  then ~1 (A) is indeed an idem- 

potent  say WH, for some compact  subgroup H '  C G / R :  and it is infinitesimally 

divisible in M 1 rg '~  by Lemma 3.1, 7rl(A) = w~:(H). Hence G(A) C H R :  r~(H)~ -~ J, 
and we may  assume tha t  G = H R : .  Since the length of R1 = k - 1, the assertion 

follows by induction. This completes the proof. | 

COROLLARY 3.5: Suppose that G and S are as in Theorem 3.4. Let S consist 

of  normal measures. Let  S '  = {u~ I t, �9 S} (it is an abelian semigroup). Let 

A �9 S be such that A is not a translate of an idempotent and AA is infinitesimally 

divisible in S'.  Then there exists a continuous A-norm fx  on S such that f:~(A) > 

O. 

Proof: Let 02 H be the identi ty in S and S' .  For any measure u, e C snpp(u~).  

Hence if , ~  e Tx5 , in S ' ,  then supp(u~) C G(AA). Now if AA -- WH,, an idem- 

potent ,  then  it follows from the assumption that  AA is infinitesimally divisible in 

M ~ ( H ' ) ,  which is compact .  Hence by Lemma 3.1, AA = WH and hence A is a 

t ranslate  of WH, a contradiction.  Therefore, AA is not an idempotent .  Now S '  

and AA satisfy all the conditions in Theorem 3.4 and hence there exists a contin- 

uous AA-norm f~5, on S '  such tha t  f~5,(AA) > 0. If A:, A2, A:A2 c T~ in S then 

Al~1A2A2 e T x ~ in S ' .  Let f~ : Tx --+ R + be defined as f~(a) = f~x(a~)  for all 

a E T~. It  is continuous and f;~(A:A2) = f~(A:)f~(A2),  for any A:,A2 as above 

and f~(A) -- f ~ ( A A )  > 0. This proves the assertion. | 

THEOREM 3.6: Let G be a totally disconnected group which is a compact exten- 

sion of  a dosed solvable normal subgroup. Let  S be a dosed abelian subsemigroup 

of  M ~ ( G )  with identi ty W H .  Let A C S be such that A is not a translate of  an 
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idempotent  and each a E Tx is in~nitesimally divisible in S. Then there exists a 

continuous A-norm f ~ on S such that f ~ ( A ) > O. 

Proof: Since S is abelian for any a E T~, T~ C T~, and hence without toss 

of generality, we may assume that  S is the closed subsemigroup generated by 

T~. Moreover, as in the last part  of proof of Proposition 2.8, we can show that  

S C M I ( G ( A ) )  = WHM'(G(A))~;H. 

Suppose that  G is compact. Then the assertion follows from Proposition 3.3. 

If G(A) is compact  then, since S c M~(G(s  we may assume that  G = G(A) 

and the assertion follows. 

Now suppose that  G(A) is not compact. Let R be a closed normal solvable 

subgroup such that  G / R  is compact and let Ir : G ~ G / R  be the natural  projec- 

tion. Then ~r(S) is a compact abelian semigroup with identity r(WH) and 7r(A) 

is infinitesimally divisible in lr(S). 

If zr(A) is not a translate of an idempotent, then the assertion follows exactly 

as in Step 2 of Theorem 3.4. 

Suppose that  7r(A) is a translate of an idempotent. Then since A is infinitesi- 

mally divisible in lr(S) with identity wit(H), by Lemma 3.2, It(A) = Wlr(H ). Then 

G(A) C H R  and, since H R / R  is compact, without loss of generality we may 

assume that  G -- H R .  

Now we prove the rest by induction on the length n of R. Let n -- 1. Then 

the assertion follows exactly as in Step 4 of the proof of Theorem 3.4. 

Now suppose that  the assertion holds when n _< k - 1 and consider the case 

when n = k. Let r l  : G --~ G/R1 be the natural projection, where R1 = JR, R] 

is the commutator  subgroup of R. Since R/R1 is abelian, if 7rl(A) is not a 

translate of an idempotent,  then the assertion follows as in Step 5 of the proof of 

Theorem 3.4. Suppose 7rl (s is a translate of an idempotent. Then by Lemma 3.2, 

~1 (A) = ~ r l  ( g )  a s  7[" 1 (A) is infinitesimally divisible in 7r1(S). Hence G(A) C HR1 

and we may assume that  G = HR1. Since the length of R1 is k - 1, the assertion 

follows by induction. This completes the proof. | 

PROPOSITION 3.7: Let G be a compact extension of  a dosed solvable normal 

subgroup such that G O is either compact or nilpotent. Let S be a dosed abelian 

subsemigroup of  M 1 (G) with identity WH. Let A E S be such that A is not a 

trans/ate of an idempotent. Suppose that for any a E T~ and any neighbourhood 

U o fwH in S, there exist A1,...,)~m E U and u E S such that A = A1 .--Ainu, 

where u -- 6~ * WH for some x E G ~ Then there exists a continuous A-norm f~ 

on S such that f~(A) > 0. 
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Proof: As before, we may  assume tha t  S is genera ted by T~. Suppose A is not a 

t rans la te  of  an idempotent .  Now suppose 7r: G --~ G / G  ~ is the na tura l  project ion.  

Then  7r(c~) is infinitesimally divisible in zr(S) for all a ETA.  tf  ~r(A) is not  a 

t rans la te  of an idempoten t ,  then the assertion follows from T h e o r e m  3.6. Let  

7r(A) be  a t rans la te  of an idempotent .  Then  since 7r(A) is infinitesimally divisible 

in 7r(S), by L e m m a  3.2, 7r(A) = cV~(H). Also, for any a E T~, 7r(c~) = W~(H). 

Hence we may  assume tha t  G = H G  ~ First  suppose tha t  G o is compact .  Then  

G = H G  ~ is compac t  and the assert ion follows from Proposi t ion 3.3. 

Now suppose  G o is ni lpotent .  Since H A G  ~ is a compact  subgroup of G ~ H A G  ~ 

is central  in G O and hence normal  in G. Then  G1 = G / ( H  N G ~ = H '  �9 G', a 

semidirect  p roduc t  of H t = H / ( H  N G ~ and G t = G ~  n GO). If c~ C S, then  

the image of a on G1/G t is WH,. Hence as in Step 4 of the proof  of Theo rem 

3.4, we can define S t consisting of a t where c~' is a project ion of c~ on G ' ,  for 

all a E S. Then  S '  is a closed abel ian semigroup with identi ty ~ .  Let  K be 

the max ima l  compac t  (central) subgroup of G O and let 7d: G' -+ G ~  be the 

na tura l  project ion.  Then  G ~  is a s imply connected ni lpotent  Lie group and, if 

7r~(A ') is not a t rans la te  of an idempotent ,  by Theorem 5.1 of [$3], there  exists a 

continuous 7r '(A')-norm on 7rt(S t) and one can define a A-norm correspondingly.  

Let 7/(A') be a t rans la te  of an idempotent ,  then  since G ~  is s imply connected,  

7d(A'A') = ~ and hence supp(A'A')  C K t = K / ( H  N GO), which is compac t  and 

central  in G' .  So for any ~ E T~,, c~'c)' = & 'a  ~ E T~,~,, c~'& t is suppor ted  on K '  

and it is infinitesimally divisible in M I ( K t ) .  Now if A@ is not an idempoten t  

on K ' ,  the assert ion follows f rom Proposi t ion 3.3. If A@ is an idempoten t  then,  

by L e m m a  3.1, AtA ' = ~ in M I ( K ' ) .  This  implies tha t  suppAA C H and hence 

AA = WH. In par t icular ,  A is a t rans la te  of an idempoten t  which is a contradict ion.  

This  completes  the proof, l 

PROPOSITION 3.8: Let G be any locally compact group and let H be any open 

subgroup of G. Let  S be any closed abelian subsemigroup of M } ( G )  such that 

S consists of normal measures. I f  A E S is not a translate of an idempotent, then 

there exists a A-norm f;~ on S such that f),(A) > 0. 

Proof." Let B be the Banach  algebra generated by S and S in M(G) ,  where 

= {z) I u E S}. Then  B is a commuta t ive  C*-a lgebra  with identi ty wH. Since 

H is open,  if {A~} C S is such tha t  A~ -+ WH weakly then A~ --+ WH in the norm 

topology. 

Suppose  t ha t  A is not a t rans la te  of an idempoten t  and,  if possible, suppose  

tha t  AA E B is an idempoten t ,  say WH,, for sorge compac t  group H ~. T h e n  

suppA C H ' x  = x H '  for any x E suppA. The  spec t rum of AA on B is con- 



21o R. SHAH Isr. J. Math. 

tained in {0, 1} and hence, for any continuous complex homomorphism f on B, 

f(A(A~)) = f(A)f(A~) = /(A) and hence, by the Gelfand-Naimark Theorem 

(cf. [Ru], Theorems 11.9, 11.18), A(A~) = Atoll, = A and therefore A --- COH, X is a 

translate of an idempotent, a contradiction. Therefore A~ is not an idempotent. 

Then there exists a continuous complex homomorphism f :  B --+ C such that 

0 < f(A~) < 1 (cf. [Ru], Theorems 11.9, 11.18). Now we define fa: Tx --~ R+ as 

follows: f x (a )  = -logf(c~&), for all a e T~. Clearly f~ is a A-norm such that 

f~(A) > 0. | 

THEOREM 3.9: Let G be a discrete group and let S be a closed abetian subsemi- 

group of M 1 (G) with identity WH. Let A E S be such that A is not a translate of 

an idempotent  and each a E T~ is infinitesimally divisible in S. Then there exists 

a A-norm f~ on S such that f~(A) > 0 i f  any one of the following conditions is 

satisfied: 

(1) G is a finite extension of a solvable (normal) subgroup, 

(2) S consists of normal measures, or 

(3) G is a linear group over a locally compact field of  characteristic zero. 

Proo~ If (1) is satisfied, the assertion is obvious from Theorem 3.6. If S consist 

of normal measures, then the assertion follows from Proposition 3.8. 

Now let G be a discrete linear group over a locally compact field of character- 

istic zero. As in the proof of Theorem 3.6, supp a C G(A) for all a E T~ and 

hence, without loss of generality, we may assume that S is generated by T~ and 

that  G = G(A). If G is amenable then, by Tits'  theorem (cf. [T], Theorem 1), G 

is a finite extension of a solvable normal subgroup and hence the assertion follows 

from (1). Now let G be nonamenable. Let L2(G) be the set of all square inte- 

grable functions on G with respect to the left invariant Haar measure on G; let 

B L ( L  2 (G)) be the Banach algebra of all bounded linear operators on L 2 (G). Let 

r M ( G )  --+ BL(L2(G))  be the canonical representation. It is faithful and con- 

tinuous with respect to the norm topology on both the spaces and lie(A)II -< flA[t 

(cf. [HR], Theorem 20.11). Moreover, since G is discrete, as before, {An} c S 

converges to WH weakly if and only if it converges in the norm topology and 

hence {r converges in the norm topology. Let P = ~b(wg) and let /~' be 

the commutative Banach algebra generated by r  with identity P.  Since A is 

infinitesimally divisible in S, so is r in B ~ and hence it is invertible in B'. 

Since G = G(A) is nonamenable, the spectral radius of r on BL(L2(G))  

is less than 1 (cf. [DG]). Let g~ = P B L ( L 2 ( G ) ) P .  Then g ~ is a Banach algebra 

with identity P and r E g ~. Now if for some c E C, if ~b(A) - cI is invertible 

in BL(L~(G))  with inverse A, then it is easy to see that r - cP is invertible 
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in C' with inverse PAP.  Therefore the spectral radius of r on C' is also less 

than 1. Since r  is invertible in B' C C', the specral radius of r is positive 

on C'. That  is, there exists an a in the spectrum of r on C' and hence on B' 

such that  0 < ]a] < 1. Now since B' is commutative, by the Gelfand-Naimark 

Theorem there exists a continuous complex-valued function f :/~' --} C such that  

f(A) = a. Let f~ : T~ -+ I ~  be defined as follows: f~(a) = - l o g  if(a)],  for all 

a E T~. Clearly f~ satisfies desired conditions. I 

PROPOSITION 3.10: Let G be a closed subgroup of GL(n, Qp). Let S be a dosed 

abelian subsemigroup of M t (G) with identity 02 H such that H is open in G. 

Let A E S be such that )t is not a translate of an idempotent and each a C T~ 

is infinitesimally divisible in S. Then there exists a A-norm f ~ on S such that 

f~(;~) > O. 

Proof: As in the proof of Theorem 3.6, without loss of generality we may assume 

that S is generated by Tx and G = G(A). Let G be nonamenable, let ~b : 

G --+ BL(L2(G)) be the canonical representation and let B' be the commutative 

Banach algebra generated by ~b(S) in BL(L2(G)). Then r is the identity in 

B'. Since G = G(/~) is nonamenable, as in the last part of the proof of Theorem 

3.9, the spectral radius of ~b(A) on C' = ~b(wH)BL(L2(G))~(WH) is less than 

1. Since H is open, we have that  if {An} C S converges to WH weakly then it 

converges in the norm topology, and hence {~b(An)} converges to ~b(WH) in the 

norm topology. Also, since A is infinitesimally divisible is S, so is ~b(A) in B' 

and hence it is invertible in /Y C C'. Therefore, the spectral radius of r on 

C is positive and hence there exists a A-norm as in the last part of the proof of 

Theorem 3.9. 

Now suppose that  G is amenable. Let G be the Zariski closure of G in 

GL(n, Qp). Let R be the radical of (~, i.e. R is the maximal Zariski connected 

solvable normal subgroup of G. Then G/R is semisimple. Let zr: G -+ G/R  

be the natural projection. Then 7r(G) is Zariski dense in G/R. Also, 7r(G) is 

amenable (cf. [Z], Lemma 4.1.13). Therefore, since G/R is semisimple, using 

Furstenberg's Lemma (Lemma 3.2.1 in [Z] or Lemma 1 in [Sh]), one can show as 

in the Corollary of [Sh] that  It(G) is compact. That  is, GR is a compact extension 

of a closed solvable normal subgroup. Now the assertion follows from Theorem 

3.6. I 

4. Embeddability 

In this section we find the embedding of the limit using the results on infinitesimal 
divisibility and existence of ,~-norm. 
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Let us first recall Theorem 2.3 of [$3] as it will be very useful here. 

THEOREM 4.1: Let S be an abelian Hausdorff semigroup with identity e. Let a 

be the limit of  an infinitesimal triangular system in S. Suppose that a is bald 

in S and that Ta is compact and assoeiatefree. Suppose for all s E T a  \ { e} ,  

there exists an s-norm f~ such that f~(s) > O. Then there exists a continuous 

homomorphism r : R+ --+ S such that  r = a. 

Proof  of  Theorem 1.1: As in Proposition 2.8, there exists an abelian semigroup 

S C M ~ ( G ( # ) )  with identity w~/ such that  # is bald, infinitesimally divisible 

and T ,  in S is compact and associatefree. Let A E T,  \{Wu}. Then, as in 

Proposit ion 2.8, A is infinitesimally divisible in S. If G is totally disconnected, 

then by Lemma 3.2, A is not a translate of an idempotent. If  A is symmetric and 

it is a translate of an idempotent (say), WH,, then WH, E T ,  and, since tt is bald, 

H -- H r and hence A 2 = WH, the identity in S. Since T~ is associatefree, it is 

a contradiction. Since S C MI(G(#) )  and G(#) C L, without loss of generality 

we may assume G = L (where L is as in the hypothesis). Now from Theorems 

3.6, Corollary 3.5 and Proposition 3.3 there exists a A-norm such that  f~(A) > 0. 

Hence the assertion follows from Theorem 4.1. 

Proof  of  Theorem 1.2: Let G be any discrete group. As in Proposition 2.8, there 

exists an abelian semigroup S C M~(G(Iz))  with identity w~ such that  tz is bald 

and infinitesimally divisible in S and T~ is compact and associatefree. Moreover, 

S consists of normal measures if A is normal. Let A ~ T~ \{WH}; then, as in the 

proof of Theorem 1.1, A is not a translate of an idempotent. Now if G(#) is a 

finite extension of a solvable group, then the assertion follows from Theorem 1.1. 

If G(tt) is a discrete linear group over a locally compact field of characteristic 

zero or if A is normal, then, by Theorem 3.9, there exists a A-norm f~ such that  

f~(A) > 0. Now the assertion follows from Theorem 4.1. | 

THEOREM 4.2: Let G be a locally compact first countable group such that G is a 

compact extension of a closed solvable normal subgroup. Let A be a commutative 

infinitesimal triangular system converging to #. Suppose that  I,/(I~~ o N Z)  is 

compact. I f  

(1) G O is compact or nilpotent, or if  

(2) A is normal, 

then I~ is weakly infinitely divisible; moreover, i f  I~ / Z  ~ is compact then x/~ is 

embeddable for some x E I~ in particular, i f  I ~ = Z ~ then # is infinitely divisible, 

and it is embeddable i f  Z ~ is arcwise connected. 
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Remarks: (1) In the above theorem, if the group G is Lie projective (instead of 

first countable) and if I ~ = Z ~ (and all the other conditions are satisfied) then, 

by Proposition A.2 (see Appendix), # is infinitely divisible in a compact subset 

of M~(G) and hence xp is embeddable for some x E Z~ # itself is embeddable 

if Z ~ is arcwise connected. 

(2) If G is connected and nilpotent, then the condition that  I ~ -- Z ~ is the 

same as the condition that  I ~  is compact. 

(3) If G is totally disconnected then I ~ = Z ~ = {e} and hence some parts of 

Theorems 1.1 and 1.2 follow trivially from Theorem 4.2. I 

Proof of Theorem 4.2: Let G, A, # be as given. Since I ~ 1 7 6  is compact,  by 

Proposition 2.9, there exist an abelian semigroup S C M~ (G) and an equivalence 

relation ~ and the corresponding projection 7r : S --+ S' = S~ ~ such that  7r(#) 

is bald and infinitesimally divisible in S '  and T~(,) is compact and associatefree. 

Moreover, any ~ E T~ satisfies the condition mentioned in the proposition. Here 

7r = Trier2, where ~rl and 7r2 are as in the proof of Proposition 2.9. Since kerTr2 

is compact,  it is easy to see that  T~I(, ) (in ~1(S)) is compact and 7rl(X#) is 

infinitesimally divisible in 7r1(S) for some x C I ~ Also, for any c~ C T~ (in S), 

given any neighbourhood U of WH in S, there exis t ~1 , . . .  ,c~n C U and a E I ~ 

such that  5a *COH E S and c~ = ao~l . . .  O~n. 

Let G be a compact extension of a closed solvable normal subgroup and let 

G o be compact or nilpotent or let A be normal. Let A E T~ be such that  

7r(A) C T~(~) \{Tr(wH)}. If possible, suppose A = WH, * 5x. If A is normal, then 

the elements of S are normal and the above condition implies that  WH, = AA 

is infinitesimally divisible in M}~(H') and hence, by Lemma 3.1, AA = WH and 

"~ = 02H * (~x" 

Let zr': G --+ G/G ~ be the natural projection. Then H C H '  and, from the 

condition above, we get that  7r'(A) is infinitesimally divisible in MI~,(H)(G/G ~ 

and hence, by Lemma 3.2, 7r'(A) = zc'(WH) = lr '(a) for all c~ E T~ (in S). Tha t  

is, x E G ~ H '  C HG ~ and AA is infinitesimally divisible in M I ( H G ~  Now 

if G O is compact,  then so is HG ~ and hence, by Lemma 3.1, AA = WH and 

)~ = WH *(~. If G O is nilpotent, then H N G  ~ is central in G o and normal in HG ~ 

Let zr": HG ~ --+ H G ~  N G ~ be the natural projection. Here, H G ~  A G ~ 

is a semidirect product of HI  = H / ( H  M G ~ and G1 = G~ N GO). As in the 

proof of Proposition 3.7, for a C M}t(HG~ let a '  be the projection of zr"(a) 

on G1. Then 7r"(a) = lr"(WH) * a' = a' * 7r"(WH). Moreover, for any a C T~, 

s u p p a  C H'y  C HG ~ where y E G o and hence s u p p a '  c r " ( ( H '  A G~ 

where 7d~(H ~ n G ~ is central in G1 and hence a '  is normal. Therefore, A~A ~ is 
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infinitesimally divisible in M 1 (u"(H'M GO)) and hence, by Lemma 3.1, ~'~' = ~.  

Therefore ~ ---- ~d H * (~x. 

Thus  in all the three cases, A = WH * 5~ for some x E I t, MN(H), where N(H) 
is the normaliser  of H and, for any a E T~, a = WH * 5y for some y E It` n N(H). 
Now from the above condition, the image of x on L -- It` M N(H) / ( I~  A N(H)) 
is infinitesimally divisible and hence it is trivial as L is total ly disconnected. This 

implies tha t  x E I~  N N(H) and hence 7r(A) = ~(WH), a contradiction. Hence 

is not  a t ranslate  of an idempotent  and, by Corollary 3.5 and Proposi t ion  

3.7, there exists a A-norm on S, f~: T~ ~ ]t(+ such that  f~(~) > 0. Clearly, 

f~(wg) ---- 0 and , if u E T~ is invertible, then u -1 E T~ and f~(u) + f~(u -1) = 
f~(wH) = 0, and hence f~(u) = 0. Now if v ~ v'  for some , , ~ '  E T~ in S 

then ~ = u , ' ,  for some u E T~ which is invertible, and hence f~(~) = f ~ ( , ' ) .  

Therefore,  one can define a 7r(A)-norm f~(~) on S I in a s tandard  manner  such 

tha t  f~(~)(Tr(A)) = f~(A) > 0. Now from Theorem 4.1, r ( # )  can be embedded in 

a continuous one-parameter  semigroup. Tha t  is, for each n, there exist x~ E I ~ 

and ~ E Tt` (in S), such tha t  # = xnA~. Tha t  is, # is weakly infinitely divisible. 

Now let I ~  ~ be compact .  Then  we can take the relation ~ to be as follows: 

~ ~ if ~ = z ,  for some z E Z ~ and accordingly define ~1 : MI(G) --+ MI(G)/  
in the proof  of Proposi t ion 2.9. Then  we have a semigroup S and S ~ accordingly 

as cons t ruc ted  in Proposi t ion 2.9 and clearly, for Tt` in S, T~/Z ~ is relatively 

compact .  Let #~ -- y~An I for some sequences {Yn} in I ~ M S and {A~!} in 

Tt` (in S). Then  y~ -- k,~z,~ for some relatively compact  sequence {kn} in I ~ 

and a sequence {z~} E Z ~ Since Z ~ is a connected abelian group each zn is 

divisible, and hence knl / t  = ((zn/n!))~,~!) n!. Let y be a limit of {k~-~}. Since 

Z ~ is compact ly  generated, by Lemma 3.2 of [$2], y#  is infinitely divisible in 

a compact  subset of S and hence x#  is embeddable for some x E I ~ Now if 

I ~ = Z ~ then x E Z ~ is infinitely divisible and hence # is infinitely divisible 

in S. If Z ~ is arcwise connected, then x -~ is embeddable in a continuous one- 

parameter  semigroup {xt} C Z ~ Hence # is embeddable.  I 

Proof of Theorem 1.5: Let G be any locally compact  group and let {vi} be a 

sequence converging to 5~ such tha t  u~' --+ # for some unbounded sequence {ki}. 

Suppose tha t  I~  ~ M Z) is compact .  Then  as in the proof of Proposi t ion 2.9, 

we define an equivalence relation '.~' and ~1: MI(G) ~ M'(G) = MI(G)/  
and get t ha t  ~r(#) has a K ' r l ( U ) - d e c o m p o s i t i o n  for any small ne ighbourhood 

U of Jt` such tha t  T.l(t` ) M K'TCl(U) is compact ,  where K' = ~rl(I~ From the 

cons t ruc t ion  of the decomposit ion,  it is easy to see tha t  r l ( # )  = r l (A  m) for some 

A and m, where ~rl(A) E K'rl(U) is a limit of some sequence {rl(U~*)}; here we 
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say that  7c1(#) has an equal decomposition in KrTh(U) for every neighbourhood 

U of J~. Clearly, each rl(A) also has an equal decomposition in K'Th(U) for 

every neighbourhood U of J , .  Let {Us} be a neighbourhood basis of J~ such 
m a  that  Ua C U and T~,(,) A K'Trl(U) is relatively compact. Let 7r1(#) = zq(A s ) 

for some ms and As such that  7h(As) E K'zq(Us). 

If It = 5~ *WH, for some x E I ~ then the assertion follows easily. Now suppose 

that It r ~ *WH for any x E I ~ Then we have that for every n there exist An and 

k~ > n such that lrl(A,~) e K'Trl(U) and 7rl(It) = lrl(A~). If possible, suppose 

"~ K'TrI(Ua) and ms < n for all a.  Then for fixed n, zcl(It) = Irl ( A ~ )  for A~ E 

rl(#) �9 (K'Trl(Us)) ~ for all a and hence 7h(It) �9 K'Th(J~) and # = 6~ * a2 H for 

some x �9 I ~ a contradiction. 

Now we have that  for every n, 7rl(It) = r l ( A ~ ) ,  where k~ > n and rl(A~) �9 

K'ZCl(U). Hence one can choose {r l  (An)} to be a convergent sequence with limit 

7c1(A). Since each lrl(A~) and hence 7h(A~) m has an equal decomposition in 

K'zq (U) for every neighbourhood U of J~, as in the proof of Proposition 2.8, 

one can show that  A -- {rt(A~)J m < kn} C T~( , )  is relatively compact. Since 

7q(A n) �9 A for all n, we have that 7q(A) generates a compact semigroup, (say) 

G~, and hence for some sequence {/n}, {Th(A) t"} converges to an idempotent, 

(say) h �9 T~( , ) ,  h = ~l(WH) �9 7rl(J~), where H C I(It). This implies that  

7rl (A)h = zq (~WH) for some x �9 I~. Since each A,~ and hence A has an equal 

decomposition in K'lh (U) for every neighbourhood U of J~ and h �9 J~, we get 

that  x �9 I ~ i.e. 1h((~) �9 K '  and hence 7h(A) �9 K'lh(J~). Now for any n, 

let r l (vn)  be a limit of {Th(An) [k~/~]} for large n. Then ZCl(It) = zrl(v~)3'~ -- 

7 h ( ~ ) h %  = zq(~na~), where % �9 G~, the closed semigroup generated by A in 

K'~h(J~),  and a~ �9 I ~ (See the proof of Theorem 3.6 in [$2] for details.) Hence 

for each n, # = ~ x ~  for some Xn �9 I ~ that is, It is weakly infinitely divisible. 

Now the proof of the rest of the Theorem is same as the last part of the proof of 

Theorem 4.2. So we will not repeat it here. | 

Proof of Theorem 1.6: Let A be a commutative wK-infinitesimal triangular 

system converging to # for some compact open subgroup K of G. Let G be 

totally disconnected or let A be symmetric; then it is easy to see that  the proof 

of Proposition 2.8 holds for such a A and there exists a closed commutative 

subsemigroup S in MI(G) with identity WK, such that  K C K' ,  # E S, # is bald 

and infinitesimally divisible in S and Tu (in S )  is compact and associatefree. 

Now since K is open, so is K' .  Moreover, S consists of normal measures if A is 

normal. Let A E Tu \{wK,}.  Then as in the proof of Theorem 1.1, A is not a 

translate of an idempotent. Now if G is a closed subgroup of GL(n, Qp) (resp. if 
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A is normal) then, by Proposition 3.10 (resp. by Proposition 3.8), there exists 
a h-norm fx such that fx(A) > 0 and the assertion follows from Theorem 4.1. 
| 

A p p e n d i x  

Here we present some useful results on structure of Lie groups and measures. 

A.1 PROPOSITION: Let G be a Lie group with finitely many connected compo- 

nents. Then G can be embedded as a closed subgroup in a Lie group H with 

finitely many connected components such that, if  R' is the solvable radical of H, 

then the center of H~ / R I is finite. 

Proof'. If R is the radical of G and the center of G ~  is finite, then there is 

nothing to prove. Now let the center of G ~  be infinite. By Levi decomposition 

there exists a semisimple subgroup S of G O such that  G O -- S.R, a semidirect 

product, and the center of S is infinite (discrete). Let C = Z n S, where Z is the 

center of G ~ Then C is a discrete central subgroup in G O and it is normal in G. 

Now consider the adjoint representation AdGo of G O over its Lie algebra. Then 

AdGo S is a connected semisimple matrix group and hence its center is finite. 

Since S I C  is isomorphic to Adco S, the center of S IC  is also finite. There exists 

a subgroup A of C such that  C / A  is finite and A is isomorphic to Z n for some 

n E N. Let D - -  [ ~ c x A x - l "  Since C is central in G O and normal in G, D 

is an intersection of finitely many conjugates of A, each of which is a subgroup 

of finite index in C, and hence D is a subgroup of finite index in A and it is 

isomorphic to Z n. Clearly D is normal in G. One can extend the action of G on 

D -- Z n to the action on It( n. Using this action we construct G1 = G �9 R n. Let 

D '  -- {(d,d)[ d E D}. Then D '  is a discrete central subgroup of G1 ~ It  is also 

normal in G1. Let H = G1/DC Now a straightforward calculation shows that  

R ~ = ( D R .  I~n)/D ' is the radical of H and the center of H ~  ' is finite. | 

A.2 PROPOSITION: Le t  G be a locally compact group which is the projective 

limit of a projective system ( G ~ , p ~ ,  A) of the Lie groups G~ = G /K~  (a E A),  

where (K~)aeA is a descending system of compact normal subgroups of G satis- 

fying N~cA g ~  = {e}. Let # E MI(G) .  If, for every a E A, p~(#) is infinitely 

divisible in a compact set A~ such that  pa~(Az) C A~, then # is infinitely 

divisible in a compact subset of MI(G) .  In particular, # is infinitely divisible if  

Pa(#) is infinitely divisible in Ba, where Ba = {A E MI(Ga)[  A(Tr~(F)) _> 5} for 

a fixed compact set F C G and a fixed ~ > O. 

The proof of the first part  is same as Theorem 6.6.1 in [He2]. The second 
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part  follows from Lemma 2.1 as As -- Tp~(~) N B~ is compact and p ~ ( A ~ )  C 

Ac~. 
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