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ABSTRACT

It is shown that the limit x of a commutative infinitesimal triangular sys-
tem A on a totally disconnected locally compact group G is embeddable
in a continuous one-parameter convolution semigroup if either (1)G is a
compact extension of a closed solvable normal subgroup or (2)G is dis-
crete and A is normal or (3)G is a discrete linear group over a field of
characteristic zero. For a special triangular system of convolution pow-
ers (uﬁ" — p, bn — 03), the above is shown to hold without any of the
conditions (1)-{3). For a general locally compact group G necessary con-
ditions are obtained for the embeddability of a shift of limit x of A; in
particular, the conditions are trivially satisfied when G is abelian. Also,
the embedding of a limit of a symmetric system on G is shown to hold
under condition (1) as above.

1. Introduction

The central limit problem for group-valued independent random variables (X;)
concerns the limiting behaviour of the corresponding sequence of partial sums
Sp = X7_1X;. In the classical case of real valued random variables the problem
was solved by P. Levy, who found all possible limits of the sequence of normed
sums {T,, = (1/b,)S, — an} (where b, € R}, and a, € R) under the additional
hypothesis that X;’s are identically distributed. Subsequently, S, = E?":lXij
was considered, where (X;;)7dy ;- (n; — 00) is a triangular system of random
variables which is infinitesimal in the sense that (X;;) converges to zero as i — oo,
uniformly in j.

By the classical Khintchine-Levy theory every limit of an infinitesimal triangu-
lar system on R is infinitely divisible and hence it is embeddable in a continuous
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one-parameter convolution semigroup. The same was considered on more gen-
eral abelian groups, i.e. on divisible locally compact second countable groups
by Parthasarathy et al. (cf. [PRV]) and the infinite divisibility of the limit was
shown. Ruzsa eliminated the second countability condition and also generalised
the above for all Banach spaces (cf. [R2]). A similar theorem was also proved
by Gangolli for certain symmetric spaces (cf. [G]). A result of Carnal shows
that infinite divisibility of limits holds for commutative infinitesimal triangular
systems on compact groups (cf. [C]). An analogous result by Neuenschwander
shows that the limit of such a system on a simply connected step-2 nilpotent
group is embeddable in a continuous one-parameter semigroup if each Xj; is
symmetric (cf. [N1]). The present author generalised the above to all connected
nilpotent Lie (algebraic) groups provided each Xj;; is symmetric or the measure
corresponding to the limit has ‘full’ (algebraic) support (cf. [S3]). A recent result
of Neuenschwander also shows the embeddability of the limit of such a system
on any discrete subgroups of simply connected nilpotent groups (cf. [N2]). We
refer the reader to [He2] for an exposition of the techniques and results on the
problem for various classes of groups like abelian groups, compact groups and
maximally aperiodic groups; see also [H] for the study on totally disconnected
compact groups and some examples. We also refer the reader to [R1, R2, RS] for
techniques based on the theory of Hungarian semigroups of probability measures
on abelian groups and [S3] for generalisations to nonabelian groups, which will
be used extensively here.

Here we study (in the measure-theoretic set-up) infinitesimal divisibility and
embeddability of the limits of commutative infinitesimal triangular systems on
more general locally compact groups G under certain conditions, such as when
the system is symmetric or when G is totally disconnected.

Let S be a Hausdorff semigroup with identity e. A triangular system A =
{aij € S}t € N;1 < j < ny, n; — oo} is said to be commutative if for all
i € N, a;jaik = airas; for all 1 < j,k < n;, infinitesimal in S if for every
neighbourhood U of e in S, there exists an igp € N such that a;; € U for all
1> 109 and 1 < j < n; (that is, a;; converges to e as ¢ — oo, uniformly in j) and
convergent if the sequence of row-wise product {a; = II}%,a;;} converges in S;
if p4 is its limit then we say that A converges to u. For asubset Aof Sand s € S
a decomposition as s = 81+ Sy, for some n € N, where s; € A and s;5; = s;s;
for all 4, j, is called an A-decomposition of s. An element s € S is said to be
infinitesimally divisible if s has a U-decomposition for every neighbourhood
U ofein S. For any s € S, let T, denote the set of all divisors (two sided factors)
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of s,i.e. T, ={t € S| tr = rt = s for some r € S}.

Let G be a locally compact group and let M!(G) be the topological semigroup
of all Borel (regular) probability measures with weak topology and the convolu-
tion operation. For a g € G, let §, denote the point mass at g and let gA = §,A
(also, A\g = AJ) for any A € M*(G). A triangular system A = (1ij)ién,j=1 of
probability measures on G is said to be infinitesimal if for any € > 0 and any
neighbourhood U of the identity e in G, there exists N € N such that for all
i > N, p;;(U) > 1—€for all j. (Note that this definition is the same as the
infinitesimality in the semigroup § = M'(G) defined earlier; it is also equiva-
lent to the infinitesimality of the corresponding system of random variables). A
measure u € M'(G) is said to be infinitely divisible (resp. weakly infinitely
divisible) if for every n € N, there exists pu, € M*(G) such that u? = p (resp.
e, = u for some z, € G); and it is said to be embeddable if there exists a
continuous one-parameter semigroup {u}¢>0 in M Y(@) such that u; = p. Let
M(G) be the complex Banach algebra of all bounded complex measures on G
with the usual norm (cf. [He2], pp. 31). For A € M(G), the adjoint of A,
denoted by X, is defined as A(B) = A(B-1), for all Borel sets B (recall that
B~1 = {g7!} g € B}). We call a measure A € M(G) normal (resp. symmet-
ric) if AX = AX (resp. A = X). We call a triangular system A = (i) ién j=1 In
M'(G) normal (resp. symmetric) if y;; is normal (resp. symmetric) for all
and j. Obviously, any symmetric measure (resp. triangular system) is normal.

Throughout the paper, G will be a locally compact (Hausdorff) topological
group and Z will denote its center. Also G° will be the connected component of
the identity in G. For a A € M!(G), let G()\) denote the smallest closed subgroup
containing supp A in G and let N(A), Z(\) denote respectively the normaliser and
the centraliser of G(A) in G. For any A € MY(G), let I = {z € G| zAz~! = )}
and I(A) = {z € G| X = Az = A}. Clearly, I()\) is compact and it is called
the invariance group of A. For a compact subgroup H in G, let wy be the
Haar measure of H and let My (G) = wgMY(G)wy. Then ME(G) is a closed
subsemigroup of M!(G) with identity wy. Fora A € M'(G) and any =z € G, a
measure of the form Az (resp. zA) is said to be a right (resp. left) translate
of A.

A group G is said to be almost periodic if all its finite dimensional irreducible
unitary representations seperate points in G.

THEOREM 1.1: Let G be a first countable locally compact group and let A be a
commutative infinitesimal triangular system converging to u. If either
(a) G is totally disconnected or
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(b) if A is symmetric,
then p is infintesimally divisible in M} (G(u)) for some compact subgroup H C
I{p). Moreover, if G(u) C L, where L is a compact extension of a closed solvable
normal subgroup or L is an almost periodic group, then u is embeddable.

A measure p is said to be a Poisson measure if uy = expy v, where v =
(A — wyy) for some v € Ry and A € M}(G), for a compact subgroup H of G
(cf. [H], 3.2.1). By a result of Martin L6f any embeddable measure on a discrete
group is a Poisson measure.

THEOREM 1.2: Let G be any discrete group and let A and p be as above.
Suppose that one of the following holds:
(1) G(u) is a finite extension of a solvable group;
(2) G(u) is a linear group over a locally compact field of characteristic zero;
(3) A is normal.

Then p is a Poisson measure.

Theorems 1.1 and 1.2 generalise Theorem 1 of [N1], Theorem 1 of [N2], and
also Theorem 1.2 of [S3] in the p-adic group case.

Remark: Theorem 1.1 also holds for Lie projective groups without the condition
of first countability; this can be seen from the proof, using Proposition A.2 (see
Appendix). If G is a totally disconnected Lie projective group, then it is a
projective limit of discrete groups and hence, in the notation as above, when A
is normal then u is embeddable.

We also mention here the following corollaries of Theorem 4.2, which is a
technical result proved in section 4.

COROLLARY 1.3: Let G be a real almost algebraic group, i.e. a subgroup of
finite index in an algebraic group. Let A and i be as in Theorem 1.2. Suppose
that Z(u)/Z is compact, where Z(u) is the centraliser of suppu. Then p is
embeddable if G is connected nilpotent. If either (1) G is nilpotent or (2) G is a
compact extension of a closed solvable normal subgroup and A is normal, then
there exists an € G such that xy is embeddable.

In the above corollary, if the closed subgroup generated by supp p is Zariski
dense in G then Z(u) = Z. Corollary 1.3 is a generalisation of Theorem 1.2 in
[S3]. Since G is almost algebraic, Z/Z? is finite and hence, from the hypothesis,
Z()/Z° is compact. But one knows also that I,/Z(u) is compact (cf. [D],
Corollary 2.5 or [DM], Theorem 3.2). This implies that I2/Z° is compact. The
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corollary follows from Theorem 4.2 and the remark following it, together with
this observation.

The following corollary generalizes a theorem of Parthasarathy et al. (cf. [PRV]
and also a theorem of Ruzsa (cf. [R2]).

COROLLARY 1.4: Let G be a locally compact abelian group and let A and u be
as above. Then u is infinitely divisible and there exists x € G° such that zp is
embeddable; if, further, G® is arcwise connected, then y itself is embeddable.

The Corollary follows from Theorem 4.2 and Remark (1) following it, as any
abelian group G is Lie projective and G® = Z% = IS. The corollary can be
generalised to first countable central groups up to a certain extent, as in this
case one can get weak infinite divisibility and shift embeddability of u. (A locally
compact group G is called a central group if it is a compact extension of its
center.)

The following result is about special triangular systems, i.e. the sequence of
convolution powers. For previously known results see [N] or [S1, S2].

THEOREM 1.5: Let G be a locally compact group and let {v;} be a sequence con-
verging to d.. Suppose that {1/{“} converges to u, for some unbounded sequence
{k:}. Assume also that I3/(I) N Z) is compact. Then p is weakly infinitely
divisible. If further I0/Z° is compact, then zyu is embeddable for some z € IY).
If IY = Z°, then p is infinitely divisible and it is embeddable if Z° is arcwise
connected.

In the above Theorem, in particular if G is totally disconnected, then for any
p e MYG), I} = Z° = {e} and hence, for {v;} and p as above, we get that 4 is
embeddable.

In the literature, the infinitesimality was considered in the neighbourhoods
of identity perhaps because in the classical case of R™ there are no nontrivial
compact subgroups. But in the general case of locally compact groups, we can
consider infinitesimality in any neighborhoods of wk for a compact subgroup K.
A triangular system A is said to be wk-infinitesimal if given a neighbourhood
U of wk there exists N € N, such that for all i > N, p;; € U for all j. Clearly,
a measure p which is embeddable in {4 }4>0 is wx-infinitesimal where wx = pg.
It turns out that all the results stated above hold if we replace infinitesimality
by wg-infinitesimality. Moreover, we have the following:

THEOREM 1.6: Let G be any group and let K be any compact open subgroup

of G. Let A be any commutative wk-infinitesimal triangular system converging
1

to u. Suppose also that one of the following holds: (1) G is a closed subgroup of
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GL(n,Qp), (2) A is symmetric or (3) G is totally disconnected and A is normal.
Then u is embeddable.

Perhaps a more natural generalisation of infinitesimality would be K-infinitesi-
mality for a compact subgroup K of G defined as follows: a triangular system A
on G is said to be K-infinitesimal if given € > 0, there exists a neighbourhood
U of K and N € N, such that for all # > N, p;;(U) > 1 — € for all j. All
the statements from Theorem 1.1 to Theorem 1.5 are valid if we assume that
A is K-infinitesimal, instead of infinitesimal, with the additional condition that
K C I{u). In particular, we state the following, without a proof.

THEOREM 1.7: Let G be a locally compact group and {v;} be a sequence such
that {v*} converges to u for some unbounded sequence {k;}. If either (1) G
is totally disconnected and v; — v such that G(v) is compact or (2) each v; is
symmetric, then there exists x € G such that zy is embeddable.

It may be noted that the condition that G(v) is compact is the same as saying
that the triangular system of convolution powers {f;;| pi; = v45,1 < j < k;} is
K-infinitesimal where K = G(v).

In section 2, we construct semigroups S in which the limit u of a given tri-
angular system A is infinitesimally divisible. In section 3, we construct partial
homomorphisms on the factor set of 1 under certain conditions which would en-
able us to prove the embedding of p or its shift in section 4. We also prove a
more general result in section 4 (see Theorem 4.2).
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2. Infinitesimal divisibility

Let G be any locally compact group and let A be a commutative infinitesimal
convergent triangular system with limit p. If G is totally disconnected or if A
is symmetric, we first construct an abelian semigroup S of M!(G) such that the
limit p belongs to S, 4 is infinitesimally divisible in § and T}, in S is compact. We
also construct such a semigroup under more general condition (see Proposition
2.9). For this, we use a method as in [S3] combined with some new results based
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on infinitesimality and concentration functions (see Lemma 2.1 and Theorem
2.4).

LEMMA 2.1: Let G be any locally compact group and u € M*(G). Let F be any
compact subset of G and let A = {\ € MY(G)| \(F) > 6} for some fixed § > 0.
Let {\a}, {va}, {1ta} be nets in M}(QG) such that {\o} C A and \qvy = g — p.
Then {),} is relatively compact. In particular, T), N A is compact. Also, T, N U
is compact for small neighbourhoods U of §. in M(G).

Proof: There exists a net {z,} in G such that {)\,z,} is tight (cf. [He2],
Theorem 1.2.21). That is, given an ¢ > 0, there exists a compact set K such
that Apzo(G > K) < e for all a. Let e < §. Then A\y(Kz;1 N F) # 0 and hence
T, € F71K for each a. Thus {)\,} is tight and therefore it is relatively compact
(cf. [St]). In particular, T, N A is compact, as both T, and A are closed. The last
assertion easily follows now as, if V is a compact neighbourhood of the identity
e in G, then for a sufficiently small neighbourhood U of 8., A(V) > 1/2, for all
AreU. 1

For a measure 4 € M'(G) and n > 1 let cn(K) = sup,cq p"(Kz), for any
compact subset K of G; ¢, are called the concentration functions of u.

We now note a Lemma which is a consequence of a result on concentration
functions in [DS].

LEMMA 2.2: Let G be a Lie group with finitely many connected components.
Let R be the radical of G and suppose that the center of G°/R is finite. Let
A € MY(G) be such that the concentration functions of A and X fail to converge
to zero. Then there exist a continuous one-parameter subgroup ¢ and a compact
subgroup L such that G(A\) C ¢ x L and supp A C zL for some = = ¢(1).

Proof:  Since the concentration functions of A do not converge to zero, under
the condition on G as in the hypothesis as above, Theorem 3 of [DS)] yields the
following: there exist a closed subgroup C C G and closed normal subgroups
H, N of C such that G(\) C C, N is simply connected and nilpotent, H/N is
compact, C/N = ¢’ x H/N for some (possibly trivial) one-parameter subgroup
¢’ and for every x € supp A, suppA C zH = Hz and the conjugation action of
z on N is a contraction (cf. Theorem 3, [DS]). Since the concentration functions
of X do not converge to zero and C/R’' is compact, where R’ is the radical of
C, there exist a closed subgroup C' C C such that G()) ¢ € and closed normal
subgroups H and N such that N is simply connected and nilpotent, H /N is
compact, C/N = ¢" x H /N for some (possibly trivial) one-parameter subgroup
¢” and for any y € supp A, suppA C yH = Hy and the conjugation action of
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y contracts N. Since C/N = ¢’ x H/N, and z~! contracts N, it easily follows
that N C N. But NN N is trivial as both z and ! contract N N N and hence
N is trivial. This implies that G()\) = G()) C ¢ x L, where L = H is compact,
¢t = ¢"”, and supp A C zL = Lz, where z can be chosen such that z = ¢(1).
[ ]

We recall that a locally compact group G is said to be almost connected if
G/G° is compact. Given a locally compact group G, G/G? is totally disconnected
and hence zero-dimensional and so G admits open almost connected subgroups.

PROPOSITION 2.3: Let G be an almost connected group. Suppose that A €
MY(@) is such that the concentration functions of both A and X fail to converge
to zero. Let x € supp A. Then {\"z7"} and {z ~™\"} are tight and all their limit
points are respectively right and left translates of wy for some fixed compact
subgroup H. Also, suppA C Hx = zH.

Proof: Since G is almost connected, G is Lie projective. There exist compact
normal subgroups K, such that N, K, = § and G is a projective limit of Lie
groups G, = G/K,, with finitely many connected components. Now the asser-
tion holds on G if and only if the images of {\"z~"} and {z""A"} on each G, are
tight and all its limit points are respectively right and left translates of an idem-
potent wy_, for some H,. Therefore without loss of generality, we may assume
that G is a Lie group with finitely many connected components. Then by Propo-
sition A.1 (see Appendix), we may further assume that G satisfies the condition
in the hypothesis of Lemma 2.2. Then by the Lemma, there exists a (possibly
trivial) continuous one-parameter subgroup ¢ and a compact subgroup L such
that G(A) C ¢ x L and supp A C yL, where y = ¢(1). Therefore, {\"z~"} and
{z~"A"} are contained in M(L) and hence they are tight. Let v = y 71\ = Ay~ L.
Then suppv C L and {_IFT is a compact semigroup. There exists a unique idem-
potent wy in this semigroup and all the limit points of {v"} are of the form
awg = wya (for some a € G), i.e. two sided translates of wy. Since T € supp A,
z = yl = ly for some ! € L. Then for each n, A"z™™ = A%y~ """ = "7,
and similarly, 27"A" = [7"v™. Therefore, the limit points of {A\"z~"} (resp.
{z"™A™}) are right (resp. left) translates of wy. Clearly, suppA C «H = Hz.
This completes-the proof. ]

The following Theorem plays an important role in our construction.

THEOREM 2.4: Let G be any locally compact group and let p € M*(G). Let
V' be a neighbourhood of the identity in G contained in an almost connected
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subgroup of G. Let A € M'(G) be such that A(V) > 0. Suppose that A* € T,
for all n. Then supp A C zI(p) = I(p)z, wherex € VN 1,,.

Proof: Since A" € T, for all n, there exist sequences {z,} and {y,} in G, such
that {\"z,} and {y, A"} are tight (cf. [He|, Theorem 1.2.21). That is, given ¢ > 0,
there exists a compact set K such that \"z,(K) > 1 — € and y, \"(K) > 1 —¢,
for all n. Therefore the concentration functions of both A and X fail to converge
to zero. Hence by Theorem 2.18 of Jaworski et al. [JRW], either G()) is compact
or G(A)}/N, is infinite cyclic, where N, is the smallest closed normal subgroup
of G(A) such that supp A C =Ny, for some z € G(\).

Since A(V) > 0,  as above can be chosen to be contained in V. If G is
totally disconnected then x generates a compact subgroup, say G,. But then
G(A) C G Ny, which implies that G(A\)/N, is compact. Hence from the reduction
as above G(A) is compact.

Since G/G? is totally disconnected and the concentration functions of the image
X of A on G/G® do not converge to zero, from the above arguments, it follows
that G()) is compact. This implies that G(\)G9/G? is compact.

Let M = G—(X)—C:’E. Then M is an almost connected group. Let z € supp .
Then by Proposition 2.3, {A\"z~"} (resp. {z "A"}) is tight and if v (resp. V)
is any limit point of it then v = wyy for some y € suppv (resp. V' = y'wy for
some y' € supp '} for some compact subgroup H such that supp A C zH = Hz.
Therefore wy is a limit point of {A\"z~"y~!} (resp. {y'"'z~™A"}). Since A € T,
for all n, it follows that wy € T}, and hence H C I(u). Since supp A C zH = Hz,
A = zp = pA = pz and hence zpzr~! = p. This implies that zI(u)z~! = I(u)
and supp A C zI(p) = I{p)z. This completes the proof. [ |

Let J, = {A € MY(G)| Ap = pX = p}. Clearly, J, is a compact semigroup
and for any A € M1(G), A € J, if and only if supp A C I(p).
The proof of Lemmas 2.5 and 2.6 are similar to that of Lemma 3.1 in [S3].

LEMMA 2.5: Let G and u be as above. Let U and W be neighbourhoods of Ju
in MY(G), with W C U. Let V be a relatively compact neighbourhood of e in G
such that VI(u)GY is contained in an almost connected subgroup of G. Suppose
that there exists a § > 0 such that A(VI(u)) > & for all A € U. Then there
exists an n such that for m > n, u cannot be expressed as y = A1 --- A, with
AL A €T, NUN VW and \;’s commuting with each other.

Proof: Here, U C {A\| A(VI(n)) > § > 0} and since VI(u) is compact, by
Lemma 2.1, T, N U and hence T, N U NVW is compact. Let A\ € UNVW.
Suppose, if possible, A" € T}, for all n. Then by Theorem 2.4, supp A C zI(u) =
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I(p)z. Since A(VI(u)) > & > 0, this implies that z € VI(x), and hence A € V.J,,
which is a contradiction since A € VW. Thus for any A € T, N U N VW, there
exists n{A) such that \»™) ¢ T,,. Let V' be a neighbourhood of A**) such that
V'NT, = 0 and let V be a neighbourhood of A such that V' ™ V. Now
since 7, N U~ VW is compact, there exist A;,...,\ € T, N U~ VW such that
T,NUNVW C Uﬁ=1 Vy,. Choose n = Zézl n(X;). Now, the assertion clearly
holds for this n. ]

LEMMA 2.6: Let G be a totally disconnected locally compact group and let A
be a commutative infinitesimal triangular system converging to u. Then given a
neighbourhood U of J,, in M*(G), p has a U-decomposition.

Proof: Without loss of generality we may assume that
U= {xe M\Q)| \VI() > )

for some relatively compact neighbourhood V' of e in G such that the condition
in the above Lemma, holds, and for some fixed § > 0. Let W and W' be neigh-
bourhoods of J, and &, respectively such that W’ C W and WW’' c U. We
apply the above Lemma to U, V and W, and let n be as in the conclusion of the
Lemma. Let A = (p5)i¢y j=;- Since A is infinitesimal, there exists ig such that
T > 19, Mij € W’ for all j.

We define sequences {z;x}r_; and {y;} as follows: let ¢ > 4y be given and
let {mg,...,m,} be defined inductively as follows: set mp = 0 and, after my is
defined for a k < n, let mg41 be the smallest m such that H;.":mk 41 i & Vw
if my < m; and such an m exists, and mgy; = n; if either of the conditions
fails. For 1 < k < n, let [y = my_1 and z; = ]_[;.":"lk_,’_l pij, if mg_1 < n;, and
i = 0, otherwise. Let y; = H?;mn y1M4j if my <y, otherwise y; = de. Clearly,
all z;z € VWW’' C VU and either y; = 6, or all z;; are outside VW. Since
all z;; € Ty, for each i, by Lemma 2.1, {z;} is relatively compact for each k,
and so is {y;}. Therefore, passing to a subsequence and altering the notation
suitably we may assume that {z;;} and {y;} converge to (say) zx and y, in T},
respectively. Then all zx’s and y commute with each other and z; ---zp,y = p.
Also, since z;; € VWW/, for all i, 2, € VWW' C VU (as V is compact and
WW’ C U). Here, since G is totally disconnected one can choose V to be an
open compact group and then V=V and VU =U and hence z; € U. If y = 4.,
then the above is a U-decomposition of p. If y # &, then the set {i: y; = d.}
cannot be cofinal. Hence z; = limz;, € VW for all 1 < k < n, by Lemma 2.5,
which is a contradiction to the choice of n. This proves the Lemma. |
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LEMMA 2.7: Let G be a locally compact group and let A and p be as above.
If A is symmetric then, for any neighbourhood U of J, in MY(G), u has a
U-decomposition.

STEP 1: Let N(I(u)) be the normaliser of I(x) in G. Since I(u) is a com-
pact normal subgroup in N(I{u)), there exists an open subgroup N of N(I(u))
containing I (y) such that N is Lie projective. Let K, be the compact normal sub-
groups of N such that N is the projective limit of the Lie groups N, = N/K,.
Consider the group N’ = N/I(p). Then N’ is the projective limit of the Lie
groups N/, = N/(I()Ky). Let « be fixed. There exists a neighbourhood V, of
the identity € in N/, such that if z € V., “{€}, 2> # &. Let V, be the inverse image
of V! in N. Then V, is open in N and hence in N(I(y)) and if z € V,, such that
z? € I(u)K,, then = € I(u)K,. Let V be a relatively compact neighbourhood
of identity in G such that V = K,V and VI(u) N N(I()) C V,. Without loss
of generality we may assume that U = {\] M(VI(n)) > 6} for some fixed 6 > 0.
Then K, U =U.

STEP 2: Let W and W’ be neighbourhoods of J,, and 4, respectively such that
W’ C W, and that WW’ C U. Let A € T,NU ~ K,W be a symmetric measure,
and suppose if possible that A™ € T}, for all n. Then by Theorem 2.4, supp A C
zI(1) = I(u)z and 2% € I(u) for any z € supp A. Since A(VI(x)) > § > 0, this
implies that € VI(u), and by the choice of V in step 1, z € K,I(u). Therefore
supp A C yI(u), for some y € K,, and hence A € K,J,,. This is a contradiction
as A ¢ K,W. Now since T, N U is compact, as in the proof of Lemma 2.5, one
can choose n such that for m > n, 4 # A;--- A, for any mutually commuting
symmetric measures Aj,..., A, such that Aj,..., A, € T, N U~K,W. Now
using this and the fact that K, WW’ C K,U = U, one can easily prove, along
the lines of the proof of the previous Lemma, that p has a U-decomposition.
|

Let S be a semigroup with identity e. Elements s,t € S, are said to be
associates if s = s’t = ts’ and t = t's = st’ for some s’,#' € 5. A subset A of S
is said to be associatefree if s,t € A are associates, then s =¢. An element s is
said to be bald if for any idempotent » € S if hs = sh = s, then h = e.

PROPOSITION 2.8: Let G be a locally compact first countable group and let A
and p be as above. Then if G is totally disconnected or if A is symmetric, then
there exists a closed commutative subsemigroup S of M} (G(u)) with identity
wy such that y € S, p is bald and infinitesimally divisible in S, and T, (in S) is
compact and associatefree.
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Proof: The first part of the proof is similar to Proposition 3.2 in [S3]. We give
the whole proof here for the sake of completeness.

Given a neighbourhood U of J,, by Lemmas 2.6 and 2.7, g has a
U-decomposition. Since G is first countable, one can find a neighbourhood basis
{Uk| k € N} of J, such that Upyy C Uy.

Now for k € N, let g = s1---8,k) be a Ug-decomposition of u obtained as
in Lemma, 2.6; here s; = lim; ;0 ITjc g 1y tir(i);, Where {k(é)} C N is a fixed
sequence for all [ and A(Z,1) C {1,...,n;} depends on i and [, and for fixed i,
A(i,1) are disjoint. Now using the subsystem (ux(;);)ien,jea(,1), One can get a
Uk 1-decomposition of s; = sy1 « - - 8y, Such that si,5pq = spesin foralll,n,p,q.
Here, for all l and n, s;n = lim;e0 ILjc ai,0,n) (k+1)(3)5> Where {(k + 1))} is a
fixed subsequence of {k(i)} and A(Z,{,n) C A(i,!) depends on ¢,1,n. We continue
this process.

For k € N, let M}, be the semigroup generated by {sk1,...,Skm(k)} in MYG),
where p = Sg1°** Sgmk) 1S the Ukx-decomposition of i obtained in the above
manner. Then for all k, My C Mg41, My is abelian and u4 € M. Let §) =
Uk Mk. Then S is an abelian semigroup containing u. Also, each « in S; is a
limit of Uy-decomposition in S; for small neighbourhoods Uy of J,,. Let o € S;
such that I(a) C I(u). Then J, C J,,. Arguing as in Lemmas 2.5-2.7 and using
that T, N U is compact for a small neighbourhood U of J,, and that J, is a
compact semigroup, one can show that o has a U-decomposition in Sy for every
neighbourhood U of J,..

Now let J = J,NS;. Then J is a nonempty compact abelian semigroup. Since
I(u) is compact, a simple calculation shows that, given any neighbourhood U of
J in Sy, there exists a neighbourhood U of J,, such that U NS, C U;. Therefore
1 and each o € S1, such that I'(a) C I(u), have a Uj-decomposition for every
neighbourhood U; of J in S;.

Since J is a compact abelian semigroup, there exists a maximal idempotent
! = wg, in J, where L is some compact subgroup of I(y). Then J' = Jl is a
compact abelian group and S, = S;/ is an abelian semigroup with identity I. Let
H = {z € G| such that zl € J'}. Then H is a compact subgroup contained
in I(u); let h = wy. Clearly, hp = p, J'h = Jh = {h}. Now for any z € H,
and A € S5, zA = zlA = A(zl) = Alz = Az. This implies that hAA = Ah for all
A €S,y Let S = S3h = Sih. Then S is an abelian semigroup, with identity
hand g € S. Let U be any neighbourhood of h. Since J is compact, there
exists a neighbourhood W of J such that Wh C U. Now if p = A;--- A, is a
W-decomposition in S, then each hA; = \h € WhNS1th C U NS for all ¢ and
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hA1---hAp = A"Ay - Ap = hp = p. Thus u has a U-decomposition in S for
every neighbourhood U of h. Let o € T}, in S; then a = o'h for some o’ € S
and o’hb = bha' = p for some b and hence I(«) C I(u). Now from the above,
o =af - a is a W-decomposition of o/ in S} for a neighbourhood W of J.
Then o = &’h = o h--- &), h is a U-decomposition of a in S, where Wh C U. In
particular, any « € T, is infinitesimally divisible in S.

Let U be a neighbourhood of &, such that U = {v € M}(G)| v(VH) > 6 > 0}
for some relatively compact neighbourhood V of e in G and some é > 0, such
that if G is totally disconnected then V' is any open compact group normalised
by I{u) and if A is symimetric then V is chosen as in the proof of Lemma 2.7.

Let A\,v € T,, (in S) be associates. Then there exists A’, / € S such that
A = Xv and v = VA, Therefore suppN'v' C I(\) C I(z). Then suppX C
zI{u) = I{p)z for some x € supp X'. Let X' = u; - - u, be a U-decomposition of
X. Then suppu; C z;I() = I(p)z;, x; € V. Hence if G is totally disconnected,
V is an open compact subgroup normalised by I(p) and hence supp ' C VI(u).
Since this holds for all such V' which form a neighbourhood basis of identity in G,
supp A’ C I(u). If A is symmetric, then each element of S is symmetric and hence
z2 € I{p) for all i. From the choice of V, we get that z; € (1)K, = K,I() for
all ¢ and hence supp A’ C I(u)K,, where K, C V is a compact subgroup as in
Lemma 2.7. Since V forms a neighbourhood basis of identity in G, supp A" C I{).

Thus in both the cases, supp X' C I(x). But since X' = o’h for some o' € Sy,
suppa’ C I(u) and hence o/ € J, NSy = J. This implies that X € Jh = {h}
and hence A = v. That is, T}, in S is associatefree.

Now let a € S be an idempotent such that ap = pa = p. Then suppa C I(p).
Then arguing as above, we get that a = ah = h. This proves that u is bald in S.

We now show that T}, in S is compact. Let U and V be as above. Let W
be a neighbourhood of h such that WW < U. Now if ) € T, NUNW and
A" € T, for all n, then suppA C zl(u) = I(u)z, for some z (cf. Theorem
2.4). Since A is infinitesimally divisible, arguing as above one can get that in
both the cases, suppA C I(p) and hence A = h, a contradiction as A ¢ W.
Now if v € Ty, T, C T,, and hence by the above argument, as in Lemma 2.5,
there exists an n such that for m > n, v # A;... A, in S, if A;’s commute and
Ay A €T,NUNW,

Let {A\c} C T, (in S). Since for each k, T, C T, and ) is infinitesimally
divisible, using the above and arguing as in Lemma 2.6 (with U and W as above),
there exists an n such that Ay = Agy - -+ Ak, is & U-decomposition for each k. This
implies that A, € U™, 1.e. A (VH)™ > §" for each k! Since H is compact and V is
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relatively compact, this together with Lemma 2.1 implies that {Ag} is relatively
compact. This implies that T, in S is compact.

It remains to show that S C M} (G(u)). Since S is generated by T, it is
enough to show that the elements of T, are supported on G(u). Clearly, H C
G(p). Let a € T,,. Then suppa C 2G(p) = G(p)z for any z € suppa. Since « is
infinitesimally divisible in S, T = zG(u) is infinitesimally divisible in N (u)/G(u).
That is, T = T ---Tn for any neighbourhood V of identity & in N(u)/G(u),
where N(u) is the normaliser of G{u). Now if G is totally disconnected then
open compact subgroups V form a neighbourhood basis of € and hence z € V for
all such V, therefore T =€, i.e. suppa C G(u). Now if A is symmetric then the

elements of S are symmetric and hence Z> = € for all i. Let L be an open Lie

projective subgroup of N(u)/G(p); let K., be the compact normal subgroups of
L such that L is a projective limit of L/K,. Then as in the proof of Lemma 2.7,
one can choose small neighbourhoods V, such that if Z; € V, such that 72 = ¢,
then Z; € K, for each . Therefore T € K., for all v and hence T = g, i.e.
suppa C G(p). In fact, the above gives that for any a € T),, elements of T,, are

supported on G(«). This completes the proof. |

For a semigroup S with identity e, an element s € S is said to be weakly
infinitesimally divisible if given any neighbourhood U of e in S there exist
81,...,8n, € U and an invertible element v € S such that s = us;---8,, $;’s
commute with each other and also with u. The following proposition shows
the existence of an abelian semigroup containing the limit u of a given triangular
system under a more general set up such that u is weakly infinitesimally divisible.

PROPOSITION 2.9: Let G be a locally compact first countable group and let
A be a commutative infinitesimal triangular system converging to . Suppose
that ID/(I) N Z) is compact. Then there exist a Hausdorff abelian semigroup
S in MY(G) with identity wg and an equivalence relation ~ on S such that
u€S,and if m: S — §' = S/ =~ is the natural projection then w(u) is bald and
infinitesimally divisible in S’ and T’r(y) is compact. Moreover, for any o € T, and
any neighbourhood U of wy in S, there exist A1,...,A, € U and an invertible
element u € S such that a = A\ --- \,u where u = 0, * wy for some z € 12.

Proof: Let H be an open subgroup of G such that H/GY is compact. Then H is
Lie projective. Let {K,} be a decreasing sequence of compact normal subgroups
such that each H/K,, is a Lie group and [, K, = {e}, the trivial subgroup. Let
H' = Hn1I,. Then H'is an open subgroup in I, and it is a projective limit
of H, = H'/K], where K}, = I, N K,. Then K,G® is open in G and K,I} is
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open in I,. Let V be an open relatively compact neighbourhood of e such that
Kn,V=V,VCK,G’and VNI, C K;nlg for all m.

We fix a § such that 0 < § < 1, and let U = {A € MYG)| \(VI(u)) > 6} be
a neighbourhood of J,. By Lemma 2.1, T, N U is compact. Let A\ € U be such
that \» € T}, for all n. Then by Theorem 2.4, supp A C zI(p) = I(p)x for some
zeVnlI, C KI). Then G(A) C K}, I2I(n). Since I(p) is compact, without
loss of generality we may assume that I(u) C H.

Now we can define an equivalence relation ‘~’ as follows: for v,/ € MY(G),
v~ if v =2/ for some z € I{N Z. Then M'(G) = M'(G)/ ~ is a semigroup
and the corresponding map 71: M1(G) — M'(G) is a continuous open homomor-
phism. Since I})/(I3NZ) is compact, 71(A) generates a compact semigroup, in fact
since 71(A) = m1(8;)m (v) = m(v)m1(0;) where suppv C I(u), ¢ € K}, ISI(p),
we have that 71 (d;) generates a compact group. Also T}, () N1 (U) is compact.
Let K' = 7r1(12), which is a compact group. Let W and W’ be respectively
neighbourhoods of J,, and 6. such that W/ ¢ W, K, W =W and WW' C U.
Let A be such that m1(A) € K'ny(U) ~ K'm (W). Then there exists an n such
that 71(A") & Ty, (y) as, otherwise for every n, m1(A)" € Ty, (,y then A" € T,
and since 71(A) € K'm (U), this implies that supp A C zI(u) = I{(u)z for some
z € K;,I' and hence m1()\) € K'm(K},J,) C K'm (W), which is a contradic-
tion. Using this, as in Lemma 2.5, one can show that there exists an n such
that for any m > n, m1(p) # 71 (A1) - 11(Am), with A;’s commuting with each
other and my(A1),...,7(A,) € K'm(U) K'm(W). Now using this and the
fact that WW’ C U, as in the proof of Lemma 2.6, we get that m;(x) has a
K'my(U)-decomposition in M’(G). Since G is first countable, as in the proof
of Proposition 2.8, there exists an abelian semigroup S; such that m;(x) has
a K"U-decomposition for all neighbourhoods U of J’, where K" = K' N S, is
a compact group and J' = m1(J) = m1(J,) N S1, where J C J, is a compact
semigroup. Moreover, for any mi(a) € Sy, such that T, C T, mi(a) has a
K"U-decomposition in S;.

Now since J is a compact abelian semigroup, it has a maximal idempotent
say i, where | = wy, for some compact subgroup L of G. Then JI is a compact
abelian group. Let I’ = mi(l), J” = J'l" and let S, = S1l’. Then J” (resp. Sp) is
a compact abelian group (resp. closed abelian semigroup) with identity I’. Let
H = {z € I(u)| xl € J}. Then H is a compact abelian group. Let h = wy,
b = m(h), K = K"h' and Sy(h) = Soh’ = S1h'. Then K (resp. Sz(h)) is a
compact abelian group (resp. closed abelian semigroup) with identity h'. Also
J'W = J'W = {B'}, m(u)h' = m(u) € Sa(h). Moreover, as in the proof of
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Proposition 2.8, one can get that 7;(x), and also each m(a) € Ty, (y), has a
KU-decomposition for every neighbourhood U of h’. Also, Ty, (,y is compact.
Here, K = mi(I)h' N Sy(h). Now as in the Remark before Proposition 4.4 in
[S3], we define another equivalence relation ‘=’ on Sy (h) as:

a,be Sy(h), a=b ifa=kbforsomekeK.

Let S’ = Sa(h)/ = and let ma: Sp(h) — S’ be the natural projection. Let
m = myom and let S = 771(S’). Then ‘~’ is the equivalence relation defined
by w. Clearly, S is an abelian semigroup with identity h, m(u) is bald and
infinitesimally divisible in S’ and T, is compact and associatefree (see [S3]
for details). Moreover, it is easy to see that any o € T}, satisfies the condition
mentioned in the statement of the proposition. 1

3. Partial homomorphisms

In this section we construct the partial homomorphisms required to show the
(shift-)embeddability of the limit of a triangular system.

Given a Hausdorff abelian semigroup S with identity e, for a A € S, a map
i Th — Ry is said to be a A-norm if it is continuous at e and it is a partial
homomorphism, i.e. fa(A1A2) = (A1) + fa(Aa), if Ay, Ao, A g € Th.

LEMMA 3.1: Let G be an almost periodic group and let H be any compact
subgroup of G. Let A € M}%(G) be such that X is infinitesimally divisible in
ML(G). If A\ is an idempotent, then A\ = wy and hence A = §,wy = wydy for
some T € supp A.

Proof: Since G is almost periodic, the finite dimensional irreducible unitary
representations separate points of G. For any irreducible unitary representation
(U,H), the map M1(G) — BL(H), defined by pu — [U(g)dy, is a continuous
homomorphism.

Let AA = wyy, for some compact group H' and H C H’'. We have to show
that H' = H. Let U be a neighbourhood of wy in M%(G), such that U(U)
consists of invertible elements in the subalgebra B generated by U(M}(G)). Since
X is infinitesimally divisible in M}(G), U(}) is invertible in B. Since U(}) is
the adjoint of U(X), U(AX) = U(wgr) is also invertible in B. That is, there
exists A € B such that U(wg')A = AU(wg') = U(wm) and hence U{wgr) =
Uwe)U(wh') = AU(wp U(wh') = AU(whr) = U(wy). Since this holds for all
U, we have that H = H' (cf. [He2], Theorems 1.3.3 and 1.3.8), and A\ = wy.
Since A € MK(G), A = wgly = wyd,. n
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LEMMA 3.2: Let G be a totally disconnected locally compact group and let H be
a compact subgroup of G. Let A € M} (G) be infinitesimally divisible in M} (G).
If X\ is a translate of an idempotent then A = wgy.

Proof: Let A\ = é;wp for some compact subgroup H' of G. Let {H,} be
a neighbourhood basis of identity consisting of open compact subgroups of G
normalised by H' and let {U,} be the neighbourhood basis of wy such that for
each n, B(HyH) > 1/2 for all 8 € U,. Now since A is infinitesimally divisible
in S, for any fixed -y, there exist Aq,..., A, € U,, commuting with each other,
and such that A = A;---A,,. Since A;’s commute, supp \; C z;H’, for some
z; € suppX; N HyH, supp A\; C H,H' for each i. Therefore supp A C H,H' for
all .

Also 07 H,H' = H', and thus supp A C H'. Therefore, A = wgy’, namely X it-
self is an idempotent. Clearly, H C H'. Now since A = wg is also infinitesimally
divisible in M} (H,H'), for a fixed v and H,H' is a compact group, by Lemma
3.1, A=uwy. |

PRrROPOSITION 3.3: Let G be almost periodic. Let S be a closed abelian subsemi-
group of M} (G) with identity wy. Let A\ € S be such that ) is not a translate
of an idempotent and X is infinitesimally divisible in S. Then there exists a
continuous A\-norm fy on S such that fy(A) > 0.

Proof: Since X is not a translate of an idempotent by Lemma 3.1, v = AX is
not an idempotent. Hence there exists a continuous finite-dimensional unitary
representation (U, H) of G, such that U(v)? # U(v) (cf. [He2], Theorems 1.3.3 and
1.3.8). We note that U (wp) is a (self-adjoint) projection. Let H’ be the range of
U(wgr). Let o2 MY (G) — BL(H') be defined by setting o(c) to be the restriction
of U(a) to H’, for all @ € ML (G). Then g is a continuous homomorphism. Let
H" be the kernel of U(wy). Then H = H' & H". Moreover, H" is contained
in the kernel of U(v), in particular, U(v)(z) = U(v)?(z) for all z € H". Now
since U(v)? # U(v), o(v)? # p(v) and since p(v) is self-adjoint and positive
and |lo(v)|| < 1, this implies that there exists an eigenvalue a of p(v) such that
0 < a < 1. Then |det(o(\))|? = det(g(r)) < 1. Since A is infinitesimally divisible,
as shown in Lemma 3.1, U(A) is invertible in the subalgebra of BL(H) with
identity U (wp). Therefore p(\) is invertible in BL(H') and hence | det(g()\))| > 0.
That is, 0 < |det(g(A))| < 1. Hence det(o(a)) # 0 for all & € T in S. Now we
define fy: T\ — Ry as follows: fy(a) = —log|det(o())|, for all @ € T). Then
it is continuous, fi(A) > 0 and if AM{A2 € T, then fr(AA2) = fa(A1) + F(Xa).
n
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THEOREM 3.4: Let G be a compact extension of a closed solvable normal sub-
group. Let S be a closed abelian subsemigroup of M},(G) with identity wy. Let
A € S be such that the identity e € supp A and X is not an idempotent. Suppose
that each o € Ty is infinitesimally divisible in S and it is supported on G(\).
Then there exists a continuous A-norm fy on S such that f)(\) > 0.

Proof: Since S is abelian, for any o € Ty, T, C T, and hence if S’ is the
closed abelian subsemigroup generated by T} in S, then each a € T} is infinites-
imally divisible in S’. Hence without loss of generality, we may assume that S
is generated by T». Then we have that all the measures in S are supported on
G()). Since e € supp A and X is not an idempotent, A cannot be a translate of
an idempotent.

STEP 1: Suppose that G is compact. G is almost periodic and the assertion
follows from the previous Proposition. If G()) is compact, then we may take
G = G()\) and the assertion follows.

STEP 2: Now suppose that G()\) is not compact. Let R be a closed normal
solvable subgroup such that G/R is compact and let 7: G — G/R be the natural
projection. Then 7(S) is a compact abelian semigroup with identity m(wg) and

7(A) is infinitesimally divisible in 7 (S).

If 7()) is not a translate of an idempotent then there exists a continuous 7(})-
norm on 7(S) such that frx)(7(A)) > 0 (cf. Proposition 3.2). Let fx: Th — Ry
be defined as follows: fa(a) = fr(x)(7(a)) for all € Tx. Then fy is the desired
A-norm.

STEP 3: Let wn()\) be a translate of an idempotent. Then since e € supp A,
m(A) is an idempotent. m(A) is infinitesimally divisible in 7(S), by Lemma 3.1,
7(A) = wx(m).- Then G(A) C HR and since HR/R is compact, without loss of
generality we may assume that G = HR.

Now we prove the rest of the assertion by induction on the length n of R, i.e.

the smallest n such that R, = {e}, where R; = [R, R] and Rpm41 = [Rm, Rm] for
allmeN.

STEP 4: ' For this step, we only assume that A is not a translate of an idempotent.

Let n = 1. That is, R is abelian. Then H N R is normal in G. Let G' =
G/(H N R) and let 7': G — G’ be the natural projection. Then G’ = H'R', a
semidirect product of H' = H/(H N R) and R’ = R/(H N R). The projection of
7'(a) on H' = G'/R' is wy» = n'(wpy) for all « € S. For any a € S, let o be the
projection of 7'(a) on R'. Then o *wgy = wyr * o = 7'(a) (cf. [HS], Lemma
4.3). Let 8’ = {o/ € MI(R')| a € S}. Then §' is a closed abelian semigroup with
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identity 8. and « > o’ is a continuous homomorphism and X’ is infinitesimally
divisible in S’. Suppose X’ is a translate of an idempotent. Since R is abelian,
it is almost periodic, by Lemma 3.1, N = §,. This implies that X is supported
on a coset H and it is d;wg, a contradiction. Thus ) is not a translate of an
idempotent and from Statement 6.1 of [R2] there exists a continuous X' -norm f
on S’ such that fy/(\) > 0, and hence one can define fi(@) = fa(e).

STEP 5: Now suppose that the theorem holds when n < k — 1 and let n = &.
Let m;: G — G/R; be the natural projection. Since R/R; is abelian, if #1(A)
is not a translate of an idempotent then, from Step 4, there exists a continuous
XN-norm fr, (3 Tryn) — Ry such that fr o (mi(A)) > 0. Let fa: Th = Ry
be defined as follows: fx(a) = fr,(n)(m1(@)), for all a € Ty, and the assertion
follows in this case.

SteEP 6: If 71 ()\) is a translate of an idempotent, then 71 () is indeed an idem-
potent say wy for some compact subgroup H' C G/R; and it is infinitesimally
divisible in My ) (H'), by Lemma 3.1, m1(}) = wq, (). Hence G(A\) C HRy
and we may assume that G = HR;. Since the length of Ry = k— 1, the assertion
follows by induction. This completes the proof. |

COROLLARY 3.5: Suppose that G and S are as in Theorem 3.4. Let S consist
of normal measures. Let S = {vv|v € S} (it is an abelian semigroup). Let
A € S be such that A is not a translate of an idempotent and A is infinitesimally

divisible in §’. Then there exists a continuous A-norm fy on S such that fy(X) >
0.

Proof: Let wy be the identity in S and S’. For any measure v, e € supp(vi).
Hence if v € T,5 in S’, then supp(vi) C G(AX). Now if AX = wg, an idem-
potent, then it follows from the assumption that A\ is infinitesimally divisible in
ML (H'), which is compact. Hence by Lemma 3.1, A\ = wy and hence A is a
translate of wy, a contradiction. Therefore, AX is not an idempotent. Now §’
and A\ satisfy all the conditions in Theorem 3.4 and hence there exists a contin-
uous A\-norm fix on S’ such that f)‘;()\j\) > 0. If A\;, A2, A1A2 € T\ in S then
MAAgdg € Ty; in . Let fi : Ty — R* be defined as fi(a) = f,;(ed@) for all
a € T. It is continuous and fa(A1Ae) = fir(A1)fr(Xe), for any A, Ag as above
and fi(A) = f/\;\()\j\) > (. This proves the assertion. ]

THEOREM 3.6: Let G be a totally disconnected group which is a compact exten-
sion of a closed solvable normal subgroup. Let S be a closed abelian subsemigroup
of M%(G) with identity wy. Let A € S be such that X is not a translate of an
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idempotent and each o € T) is infinitesimally divisible in S. Then there exists a
continuous A-norm fy on S such that f,(\) > 0.

Proof: Since S is abelian for any o € T\, T, C T, and hence without loss
of generality, we may assume that S is the closed subsemigroup generated by
T. Moreover, as in the last part of proof of Proposition 2.8, we can show that
S C MY(G(N) = wg MY G(N))wh.

Suppose that G is compact. Then the assertion follows from Proposition 3.3.
If G()\) is compact then, since S C M}, (G())), we may assume that G = G(})
and the assertion follows.

Now suppose that G()) is not compact. Let R be a closed normal solvable
subgroup such that G/R is compact and let 7 : G — G/R be the natural projec-

tion. Then 7(S) is a compact abelian semigroup with identity m(wg) and 7(X)
is infinitesimally divisible in 7(S).

If w(A) is not a translate of an idempotent, then the assertion follows exactly
as in Step 2 of Theorem 3.4.

Suppose that 7(A) is a translate of an idempotent. Then since A is infinitesi-
mally divisible in 7(S) with identity Wr(H), by Lemma 3.2, m(A) = wr(z). Then
G(X\) C HR and, since HR/R is compact, without loss of generality we may
assume that G = HR.

Now we prove the rest by induction on the length n of R. Let n = 1. Then
the assertion follows exactly as in Step 4 of the proof of Theorem 3.4.

Now suppose that the assertion holds when n < k — 1 and consider the case
when n = k. Let m; : G — G/R; be the natural projection, where R; = [R, R]
is the commutator subgroup of R. Since R/R; is abelian, if m1()\) is not a
translate of an idempotent, then the assertion follows as in Step 5 of the proof of
Theorem 3.4. Suppose 7 (A) is a translate of an idempotent. Then by Lemma 3.2,
71(A) = wWr, () as 71(}) is infinitesimally divisible in 71(S). Hence G()\) C HR;
and we may assume that G = HR;. Since the length of R; is k — 1, the assertion
follows by induction. This completes the proof. i

PROPOSITION 3.7: Let G be a compact extension of a closed solvable normal
subgroup such that G° is either compact or nilpotent. Let S be a closed abelian
subsemigroup of M(G) with identity wy. Let A € S be such that X is not a
translate of an idempotent. Suppose that for any o € Ty and any neighbourhood
U of wy in S, there exist M\1,...,A\m € U and u € S such that A = A1 --- Apu,
where u = 6, * wy for some z € G°. Then there exists a continuous A-norm f)
on S such that fy(A) > 0.
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Proof: As before, we may assume that S is generated by T. Suppose X is not a
translate of an idempotent. Now suppose m: G — G /G is the natural projection.
Then 7(a) is infinitesimally divisible in 7(S) for all & € T. If w()\) is not a
translate of an idempotent, then the assertion follows from Theorem 3.6. Let
m(A) be a translate of an idempotent. Then since 7(A) is infinitesimally divisible
in 7(S), by Lemma 3.2, () = Wr(e). Also, for any a € Ty, 7(a) = wxm).
Hence we may assume that G = HG®. First suppose that G° is compact. Then
G = HG" is compact and the assertion follows from Proposition 3.3.

Now suppose G? is nilpotent. Since HNGY is a compact subgroup of G°, HNG®
is central in G® and hence normal in G. Then G; = G/(HNG®) = H' -G, a
semidirect product of H' = H/(HN G%) and G' = G°/(HNG®). If o € S, then
the image of @ on G1/G’ is wy'. Hence as in Step 4 of the proof of Theorem
3.4, we can define S’ consisting of &/ where o is a projection of a on G, for
all @« € 5. Then S’ is a closed abelian semigroup with identity d.. Let K be
the maximal compact (central) subgroup of G® and let 7/: G’ - G9/K be the
natural projection. Then G°/K is a simply connected nilpotent Lie group and, if
7'(X') is not a translate of an idempotent, by Theorem 5.1 of [S3], there exists a
continuous 7/(A')-norm on 7/(S’) and one can define a A-norm correspondingly.
Let 7/()\') be a translate of an idempotent, then since G®/K is simply connected,
7' (MN) = 8, and hence supp(N)) € K’ = K/(H N G®), which is compact and
central in G’. So for any o' € Ty, o/&' = &'’ € T),5,, a'@ is supported on K’
and it is infinitesimally divisible in M'(K’). Now if X is not an idempotent
on K’, the assertion follows from Proposition 3.3. If ')’ is an idempotent then,
by Lemma 3.1, XX = 4, in M*(K"). This implies that supp AA C H and hence
A\ = wy. In particular, A is a translate of an idempotent which is a contradiction.
This completes the proof. ]

ProPOSITION 3.8: Let G be any locally compact group and let H be any open
subgroup of G. Let S be any closed abelian subsemigroup of M} (G) such that
S consists of normal measures. If A € S is not a translate of an idempotent, then
there exists a A-norm fy on S such that f\()\) > 0.

Proof: Let B be the Banach algebra generated by S and S in M(G), where
S = {#| v € S}. Then B is a commutative C*-algebra with identity wg. Since
H is open, if {A,} C S is such that )\, — wy weakly then A\, = wy in the norm
topology.

Suppose that A is not a translate of an idempotent and, if possible, suppose
that AX € B is an idempotent, say wy, for some compact group H'. Then
suppA C H'z = zH' for any ¢ € supp). The spectrum of AX on B is con-
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tained in {0,1} and hence, for any continuous complex homomorphism f on B,
FOAOX) = F(NVF(AN) = f(\) and hence, by the Gelfand-Naimark Theorem
(cf. [Ru], Theorems 11.9, 11.18), A(AX) = Awg = A and therefore A = wypx is a
translate of an idempotent, a contradiction. Therefore AX is not an idempotent.
Then there exists a continuous complex homomorphism f: B — C such that
0 < f(AX) <1 (cf. [Ru], Theorems 11.9, 11.18). Now we define fy: Ty — Ry as
follows: fi(a) = —log f(ad), for all & € Ty. Clearly fy is a A-norm such that
Hr(A) > 0. |

THEOREM 3.9: Let G be a discrete group and let S be a closed abelian subsemi-
group of M*(G) with identity wy. Let A € S be such that X is not a translate of
an idempotent and each oo € T), is infinitesimally divisible in S. Then there exists
a A-norm fy on S such that fy(A) > 0 if any one of the following conditions is
satisfied:

(1) G is a finite extension of a solvable (normal) subgroup,

(2) S consists of normal measures, or

(3) G is a linear group over a locally compact field of characteristic zero.

Proof: 1If (1) is satisfied, the assertion is obvious from Theorem 3.6. If S consist
of normal measures, then the assertion follows from Proposition 3.8.

Now let G be a discrete linear group over a locally compact field of character-
istic zero. As in the proof of Theorem 3.6, suppa C G(A) for all & € T and
hence, without loss of generality, we may assume that S is generated by Ty and
that G = G()). If G is amenable then, by Tits’ theorem {cf. [T], Theorem 1), G
is a finite extension of a solvable normal subgroup and hence the assertion follows
from (1). Now let G be nonamenable. Let L?(G) be the set of all square inte-
grable functions on G with respect to the left invariant Haar measure on G; let
BL(L?(G)) be the Banach algebra of all bounded linear operators on L?(G). Let
¥: M(G) - BL(L*(G)) be the canonical representation. It is faithful and con-
tinuous with respect to the norm topology on both the spaces and [|¢(A)|| < ||A]l
(cf. [HR], Theorem 20.11). Moreover, since G is discrete, as before, {)\,} C S
converges to wy weakly if and only if it converges in the norm topology and
hence {¢(A,)} converges in the norm topology. Let P = ¢(wy) and let B’ be
the commutative Banach algebra generated by ¥(S), with identity P. Since X is
infinitesimally divisible in S, so is ¥(A) in B’ and hence it is invertible in B'.

Since G = G(\) is nonamenable, the spectral radius of ¥()\) on BL(L*(G))
is less than 1 (cf. [DG]). Let ¢’ = PBL(L?*(G))P. Then C’ is a Banach algebra
with identity P and ¥()) € C'. Now if for some ¢ € C, if ¥(\) — ¢! is invertible
in BL(L?(G)) with inverse A, then it is easy to see that ¥(\) — cP is invertible
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in C' with inverse PAP. Therefore the spectral radius of (\) on C’ is also less
than 1. Since #(A) is invertible in B’ C (', the specral radius of ¥()) is positive
on C’. That is, there exists an @ in the spectrum of 1(A) on €’ and hence on B’
such that 0 < |a| < 1. Now since B’ is commutative, by the Gelfand—Naimark
Theorem there exists a continuous complex-valued function f : 8/ — C such that
f(A) = a. Let fi: T = Ry be defined as follows: fi(a) = —log|f(a)|, for all
o € Ty. Clearly f) satisfies desired conditions. 1

PROPOSITION 3.10: Let G be a closed subgroup of GL(n,Q,). Let S be a closed
abelian subsemigroup of M'(G) with identity wy such that H is open in G.
Let A € S be such that A is not a translate of an idempotent and each o € T),
is infinitesimally divisible in S. Then there exists a A-norm fy on S such that
a(A) > 0.

Proof: As in the proof of Theorem 3.6, without loss of generality we may assume
that S is generated by T) and G = G(A). Let G be nonamenable, let 9 :
G — BL(L?*(G)) be the canonical representation and let B’ be the commutative
Banach algebra generated by ¥(S) in BL(L?(G)). Then 1(wg) is the identity in
B'. Since G = G(A) is nonamenable, as in the last part of the proof of Theorem
3.9, the spectral radius of ¥(A) on €' = Y(wy)BL(L*(G))¥(wy) is less than
1. Since H is open, we have that if {A\,} C S converges to wy weakly then it
converges in the norm topology, and hence {¥(\,)} converges to ¥(wg) in the
norm topology. Also, since A is infinitesimally divisible is S, so is ¥()\) in B’
and hence it is invertible in B’ C C’. Therefore, the spectral radius of %()) on
C' is positive and hence there exists a A-norm as in the last part of the proof of
Theorem 3.9.

Now suppose that G is amenable. Let G be the Zariski closure of G in
GL(n,Q,). Let R be the radical of G, i.e. R is the maximal Zariski connected
solvable normal subgroup of G. Then G/R is semisimple. Let m: G — G/R
be the natural projection. Then W_(G—) is Zariski dense in G/R. Also, m is
amenable (cf. [Z], Lemma 4.1.13). Therefore, since G/R is semisimple, using
Furstenberg’s Lemma (Lemma 3.2.1 in [Z] or Lemma 1 in [Sh]), one can show as
in the Corollary of [Sh] that 7(G) is compact. That is, GR is a compact extension
of a closed solvable normal subgroup. Now the assertion follows from Theorem
3.6. |

4. Embeddability

In this section we find the embedding of the limit using the results on infinitesimal
divisibility and existence of A-norm.
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Let us first recall Theorem 2.3 of [S3] as it will be very useful here.

THEOREM 4.1: Let S be an abelian Hausdorff semigroup with identity e. Let a
be the limit of an infinitesimal triangular system in S. Suppose that e is bald
in S and that T, is compact and associatefree. Suppose for all s € T, “{e},
there exists an s-norm fy such that fs(s) > 0. Then there exists a continuous
homomorphism ¢ : Ry — S such that ¢(1) = a.

Proof of Theorem 1.1: As in Proposition 2.8, there exists an abelian semigroup
S C M}(G(u)) with identity wy such that g is bald, infinitesimally divisible
and T, in S is compact and associatefree. Let A € T, ~{wg}. Then, as in
Proposition 2.8, A is infinitesimally divisible in S. If G is totally disconnected,
then by Lemma 3.2, A is not a translate of an idempotent. If A is symmetric and
it is a translate of an idempotent (say), wg, then wy: € T, and, since p is bald,
H = H’ and hence A\? = wpy, the identity in S. Since T, is associatefree, it is
a contradiction. Since S C M'(G(u)) and G(u) C L, without loss of generality
we may assume G = L {where L is as in the hypothesis). Now from Theorems
3.6, Corollary 3.5 and Proposition 3.3 there exists a A-norm such that fy(}) > 0.
Hence the assertion follows from Theorem 4.1.

Proof of Theorem 1.2: Let G be any discrete group. As in Proposition 2.8, there
exists an abelian semigroup S C M} (G(x)) with identity wy such that p is bald
and infinitesimally divisible in S and T}, is compact and associatefree. Moreover,
S consists of normal measures if A is normal. Let A € T, ~{wg}; then, as in the
proof of Theorem 1.1, X is not a translate of an idempotent. Now if G(u) is a
finite extension of a solvable group, then the assertion follows from Theorem 1.1.
If G(u) is a discrete linear group over a locally compact field of characteristic
zero or if A is normal, then, by Theorem 3.9, there exists a A-norm f) such that
fa(A) > 0. Now the assertion follows from Theorem 4.1. n

THEOREM 4.2: Let G be a locally compact first countable group such that G is a
compact extension of a closed solvable normal subgroup. Let A be a commutative
infinitesimal triangular system converging to p. Suppose that Ig/ (Ig NZ)is
compact. If

(1) G® is compact or nilpotent, or if

(2) A is normal,
then p is weakly infinitely divisible; moreover, if Ig /20 is compact then Ty is
embeddable for some x € Ig ; in particular, if Ig = Z° then p is infinitely divisible,
and it is embeddable if Z° is arcwise connected.
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Remarks: (1) In the above theorem, if the group G is Lie projective (instead of
first countable) and if I) = Z° (and all the other conditions are satisfied) then,
by Proposition A.2 (see Appendix), p is infinitely divisible in a compact subset
of M'(G) and hence z is embeddable for some x € Z%; p itself is embeddable
if Z0 is arcwise connected.

(2) If G is connected and nilpotent, then the condition that I} = Z° is the
same as the condition that 12 /Z is compact.

(3) If G is totally disconnected then I = Z° = {e} and hence some parts of
Theorems 1.1 and 1.2 follow trivially from Theorem 4.2. |

Proof of Theorem 4.2:  Let G, A, pu be as given. Since I))/(I3NZ) is compact, by
Proposition 2.9, there exist an abelian semigroup S C M} (G) and an equivalence
relation ~ and the corresponding projection 7 : S — S’ = S/ = such that w(u)
is bald and infinitesimally divisible in 5" and T5(,) is compact and associatefree.
Moreover, any « € T satisfies the condition mentioned in the proposition. Here
m = w72, where my and 7w are as in the proof of Proposition 2.9. Since ker 7
is compact, it is easy to see that Ty (,) (in m1(S)) is compact and m(zp) is
infinitesimally divisible in 71 (S) for some z € If). Also, for any a € T}, (in S),
given any neighbourhood U of wy in 8, there exist a3,...,a, € U and a € 12
such that §, xwyg € S and a = acy - ay,.

Let G be a compact extension of a closed solvable normal subgroup and let
G° be compact or nilpotent or let A be normal. Let A € T, be such that
m(A) € Tr(uy “Mm(wr)}. If possible, suppose A = wy * 85, If A is normal, then
the elements of S are normal and the above condition implies that wg: = A\
is infinitesimally divisible in M} (H') and hence, by Lemma 3.1, AX = wy and
A=wg *dz.

Let n’: G — G/G° be the natural projection. Then H C H’ and, from the
condition above, we get that 7/()\) is infinitesimally divisible in M ;,( m(G/G°)
and hence, by Lemma 3.2, 7'(A) = n’'(wy) = 7'(e) for all @ € T, (in S). That
is, z € G° H' ¢ HG® and A} is infinitesimally divisible in M} (HG®). Now
if GO is compact, then so is HG® and hence, by Lemma 3.1, A\ = wy and
A = wp * 6. If G is nilpotent, then H NGO is central in G° and normal in HGP.
Let n”: HG® — HG®/(H N G°) be the natural projection. Here, HG®/(H N G°)
is a semidirect product of H; = H/(H N G®) and G; = G°/(H N G°). As in the
proof of Proposition 3.7, for a € M} (HGP), let o’ be the projection of 7 (a)
on G1. Then 7"(a) = 7" (wy) * &' = o * 7" (wg). Moreover, for any o € Ty,
suppa C H'y ¢ HG®, where y € G° and hence suppo’ C «”/((H' N G%)y),
where 7 (H' N G%) is central in G; and hence o' is normal. Therefore, X'\ is
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infinitesimally divisible in M (7" (H’ N G®)) and hence, by Lemma 3.1, N\’ = 4.
Therefore A = wgy * §5.

Thus in all the three cases, A = wy * §; for some z € I, N N(H), where N(H)
is the normaliser of H and, for any a € Ty, a = wy * J, for some y € I, N N(H).
Now from the above condition, the image of z on L = I, N\ N(H)/(IJH N N(H))
is infinitesimally divisible and hence it is trivial as L is totally disconnected. This
implies that z € IgH N N(H) and hence n(X) = m(wp), a contradiction. Hence
A is not a translate of an idempotent and, by Corollary 3.5 and Proposition
3.7, there exists a A-norm on S, fi: Th — Ry such that fx(A) > 0. Clearly,
fr(wg) =0 and , if u € T} is invertible, then u=! € Ty and fa(u) + fr(u™?) =
frlwg) = 0, and hence fy(u) = 0. Now if v = v/ for some v,/ € T) in S
then v = uv/, for some u € T\ which is invertible, and hence fy(v) = fi(V').
Therefore, one can define a m(A)-norm fr(y) on S’ in a standard manner such
that fr(7(A)) = fa(A) > 0. Now from Theorem 4.1, 7(p) can be embedded in
a continuous one-parameter semigroup. That is, for each n, there exist z, € 12
and A, € T,, (in S), such that 4 = £, A%;. That is, p is weakly infinitely divisible.

Now let I/Z° be compact. Then we can take the relation ~ to be as follows:
A ~ v if A = zv for some z € Z° and accordingly define 7 : M(G) —» MY(G)/ ~
in the proof of Proposition 2.9. Then we have a semigroup S and S’ accordingly
as constructed in Proposition 2.9 and clearly, for T, in S, T, /Z° is relatively
compact. Let pn, = ysA% for some sequences {y,} in I} NS and {An} in
T, (in S). Then y, = kyz, for some relatively compact sequence {k,} in IQ
and a sequence {z,} € Z° Since Z¥ is a connected abelian group each z, is
divisible, and hence k;'p = ((zo/n)An)™. Let y be a limit of {k;'}. Since
ZY is compactly generated, by Lemma 3.2 of [S2], yu is infinitely divisible in
a compact subset of S and hence zu is embeddable for some x € IS. Now if
Ig = Z° then = € Z° is infinitely divisible and hence 4 is infinitely divisible

-1

in S. If Z% is arcwise connected, then z—! is embeddable in a continuous one-

parameter semigroup {z;} C Z°. Hence p is embeddable. 1

Proof of Theorem 1.5: Let G be any locally compact group and let {v;} be a
sequence converging to &, such that v — u for some unbounded sequence {k;}.
Suppose that Ig / (I2 N Z) is compact. Then as in the proof of Proposition 2.9,
we define an equivalence relation ‘~’ and m: MY(G) = M'(G) = MYG)/ ~
and get that 7(x) has a K’'m (U)-decomposition for any small neighbourhood
U of J, such that T} () N K'm (U) is compact, where K’ = m1(I3). From the
construction of the decomposition, it is easy to see that m; (i) = m1(A™) for some
A and m, where 71(\) € K'm1(U) is a limit of some sequence {m1(v})}; here we
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say that m, () has an equal decomposition in K'm(U) for every neighbourhood
U of J,. Clearly, each m;()) also has an equal decomposition in K'm(U) for
every neighbourhood U of J,. Let {U,} be a neighbourhood basis of J, such
that Uy, C U and Ty, (u) N K 'n1(U) is relatively compact. Let m (1) = m (A=)
for some m,, and A, such that m (M) € K'm(Uq).

If p = 6, *wpy, for some z € Ig, then the assertion follows easily. Now suppose
that p # 8, *wy forany € I2. Then we have that for every n there exist A,, and
kn, > n such that 71(\,) € K'n(U) and m; () = m(AEn). If possible, suppose
for fixed n, w{p) = 71 (APe) for Ay € K'm{(Uy) and m, < n for all «. Then
m1(p) € (K'm(Uy))" for all @ and hence my(u) € K'm1(J,) and p = 0 * wy for
some & € I7, a contradiction.

Now we have that for every n, m1(p) = 71 (A\k»), where k, > n and m(A,) €
K'm(U). Hence one can choose {m1(A,)} to be a convergent sequence with limit
w1(A). Since each 7m1(A,) and hence m;(A,)™ has an equal decomposition in
K'm(U) for every neighbourhood U of J,, as in the proof of Proposition 2.8,
one can show that A = {m(A7})| m < kn} C T,y is relatively compact. Since
m1(A™) € A for all n, we have that 71()) generates a compact semigroup, (say)
Gy, and hence for some sequence {l,}, {m1(\)"} converges to an idempotent,
(say) b € Tyyn), h = m(wr) € m(J,), where H C I{u). This implies that
71 (A)h = 71(0;wr) for some z € I,,. Since each A, and hence A has an equal
decomposition in K’z (U) for every neighbourhood U of J,, and h € J,,, we get
that © € ID, ie. m(d;) € K’ and hence m;(A) € K'mi(J,). Now for any n,
let 71 (vy) be a limit of {m (A,)®~/™} for large n. Then m(p) = T ()Y, =
T (V) by, = m1(V2ay), where v, € G, the closed semigroup generated by A in
K'm1(J,), and ay, € I)). (See the proof of Theorem 3.6 in [S2] for details.) Hence
for each n, y = vz, for some z, € 12, that is, ¢ is weakly infinitely divisible.
Now the proof of the rest of the Theorem is same as the last part of the proof of
Theorem 4.2. So we will not repeat it here. |

Proof of Theorem 1.6: Let A be a commutative wy-infinitesimal triangular
system converging to p for some compact open subgroup K of G. Let G be
totally disconnected or let A be symmetric; then it is easy to see that the proof
of Proposition 2.8 holds for such a A and there exists a closed commutative
subsemigroup S in M 1(G) with identity wg- such that K C K', u € S, p is bald
and infinitesimally divisible in S and T, (in S) is compact and associatefree.
Now since K is open, so is K’. Moreover, S consists of normal measures if A is
normal. Let A € T, ~{wk+}. Then as in the proof of Theorem 1.1, A is not a
translate of an idempotent. Now if G is a closed subgroup of GL(n,Q,) (resp. if
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A is normal) then, by Proposition 3.10 (resp. by Proposition 3.8), there exists
a A-norm f such that fi{}\) > 0 and the assertion follows from Theorem 4.1.
|

Appendix
Here we present some useful results on structure of Lie groups and measures.

A.1 ProrosiTION: Let G be a Lie group with finitely many connected compo-
nents. Then G can be embedded as a closed subgroup in a Lie group H with
finitely many connected components such that, if R’ is the solvable radical of H,
then the center of H°/R' is finite.

Proof: If R is the radical of G and the center of G°/R is finite, then there is
nothing to prove. Now let the center of G°/R be infinite. By Levi decomposition
there exists a semisimple subgroup S of G° such that G° = S.R, a semidirect
product, and the center of S is infinite (discrete). Let C = ZN.S, where 7 is the
center of G®. Then C is a discrete central subgroup in G° and it is normal in G.
Now consider the adjoint representation Adge of G© over its Lie algebra. Then
Adgo S is a connected semisimple matrix group and hence its center is finite.
Since S/C is isomorphic to Adge S, the center of S/C is also finite. There exists
a subgroup A of C such that C/A is finite and A is isomorphic to Z" for some
n € N. Let D = () cgzAz™!. Since C is central in G° and normal in G, D
is an intersection of finitely many conjugates of A, each of which is a subgroup
of finite index in C, and hence D is a subgroup of finite index in A and it is
isomorphic to Z*. Clearly D is normal in G. One can extend the action of G on
D = Z" to the action on R". Using this action we construct Gy = G - R™. Let
D' = {(d,d)| d € D}. Then D' is a discrete central subgroup of G?. It is also
normal in G;. Let H = G1/D’. Now a straightforward calculation shows that
R' = (DR-R")/D’ is the radical of H and the center of H°/R’ is finite. ]

A.2 PROPOSITION: Let G be a locally compact group which is the projective
limit of a projective system (G, Pag, A) of the Lie groups G, = G/K, (a € A),
where (K, )aca is a descending system of compact normal subgroups of G satis-
fying Nyea Ko = {€}. Let p € MY(G). If, for every a € A, po(u) is infinitely
divisible in a compact set A, such that pag(Ag) C Aa, then p is infinitely
divisible in a compact subset of M1(G). In particular, p is infinitely divisible if
pa () is infinitely divisible in By, where By = {A € MY(G,)| AM(mo(F)) > 6} for
a fixed compact set F' C G and a fixed § > 0.

The proof of the first part is same as Theorem 6.6.1 in [He2]. The second
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part follows from Lemma 2.1 as Ay = Tp, () N By is compact and pag(Ag) C

Ay

(D]

(DM]

[DS]

(DG

(6]
[Gr]
[H]

(HS]

(HR]
[Hel]
[He2]

[Ho]
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